## MAT 1600 : Probability I <br> Assignment 5, due October 22, 2020

1. (Panchenko 2.2.4) If $\mathbb{E}|X|<\infty$ and $\lim \mathbb{P}\left(A_{n}\right)=0$, show that $\lim \mathbb{E} X I_{A_{n}}=0$.

Hint: Use the Borel-Cantelli lemma over some subsequence.
2. We have recently proved Jensen's inequality: If $g$ is a convex real-valued function on $\mathbb{R}$ and $X$ a random variable with $\mathbb{E}|X|<\infty$, then $\mathbb{E} g(X) \geq g(\mathbb{E} X)$.
(a) When is there equality in Jensen's inequality? Give a precise characterization in terms of $g$ and the distribution of $X$.
(Think about the special cases $g(x)=x^{2}$ and $g(x)=|x|$.) A sketch will help.)
(b) Justify the statement that 'Under the hypotheses of Jensen's inequality, $\mathbb{E} g(X)$ is always well-defined, though it may take the value $+\infty$ '.
3. (Panchenko 2.2.7) Suppose that $\left\{X_{n}\right\}_{n \geq 1}$ are independent random variables. Show that

$$
\mathbb{P}\left(\sup _{n \geq 1} X_{n}<\infty\right)=1 \quad \Longleftrightarrow \quad \sum_{n \geq 1} \mathbb{P}\left(X_{n}>M\right)<\infty \text { for some } M>0
$$

4. Let $\left\{X_{n}\right\}_{n \geq 1}$ be i.i.d., and $S_{n}=X_{1}+\cdots+X_{n}$.
(a) (Panchenko 2.2.6) If $S_{n} / n \rightarrow 0$ almost surely, show that $\mathbb{E}\left|X_{1}\right|<\infty$.
(Hint: Use the idea in Eq. (2.2.2) and Borel-Cantelli).
(b) (Panchenko 2.2.8) If, on the other hand, $X_{i} \geq 0$ and $\mathbb{E} X_{1}=\infty$, show that $S_{n} / n \rightarrow \infty$ almost surely.
5. (Durrett 2.2.5) Let $X_{1}, X_{2}, \ldots$ be i.i.d. with $P\left(X_{i}>x\right)=\frac{e}{x \log x}$ for $x \geq e$. Construct a sequence of constants $\mu_{n} \rightarrow \infty$ such that $S_{n} / n-\mu_{n} \rightarrow 0$ in probability.
Hint: To get $\mu_{n}$, use the truncation $X I_{X_{i} \leq n}$ for $i=1, \ldots, n$, and apply the union bound. (Remarkably, $\mathbb{E} X_{1}=\infty$ !).
6. (Panchenko 2.2.10) Let $\left\{X_{n}\right\}_{n \geq 1}$ be independent and exponentially distributed, i.e., with distribution function $F(x)=1-e^{-x}$ for $x \geq 0$. Show that

$$
\mathbb{P}\left(\limsup \frac{X_{n}}{\log n}=1\right)=1
$$

