MAT 1600 : Probability I Assignment 5, due October 22, 2020

- 1. (*Panchenko 2.2.4*) If $\mathbb{E}|X| < \infty$ and $\lim \mathbb{P}(A_n) = 0$, show that $\lim \mathbb{E}XI_{A_n} = 0$. *Hint:* Use the Borel-Cantelli lemma over some subsequence.
- 2. We have recently proved *Jensen's inequality*: If g is a convex real-valued function on \mathbb{R} and X a random variable with $\mathbb{E}|X| < \infty$, then $\mathbb{E}g(X) \ge g(\mathbb{E}X)$.
 - (a) When is there equality in Jensen's inequality? Give a precise characterization in terms of g and the distribution of X.
 (Think about the special cases q(x) = x² and q(x) = |x|.) A sketch will help.)
 - (b) Justify the statement that 'Under the hypotheses of Jensen's inequality, $\mathbb{E}g(X)$ is always well-defined, though it may take the value $+\infty$ '.
- 3. (Panchenko 2.2.7) Suppose that $\{X_n\}_{n\geq 1}$ are independent random variables. Show that

$$\mathbb{P}\left(\sup_{n\geq 1} X_n < \infty\right) = 1 \quad \Longleftrightarrow \quad \sum_{n\geq 1} \mathbb{P}(X_n > M) < \infty \text{ for some} M > 0.$$

- 4. Let $\{X_n\}_{n\geq 1}$ be i.i.d., and $S_n = X_1 + \cdots + X_n$.
 - (a) (*Panchenko* 2.2.6) If $S_n/n \to 0$ almost surely, show that $\mathbb{E}|X_1| < \infty$. (*Hint:* Use the idea in Eq. (2.2.2) and Borel-Cantelli).
 - (b) (*Panchenko 2.2.8*) If, on the other hand, $X_i \ge 0$ and $\mathbb{E}X_1 = \infty$, show that $S_n/n \to \infty$ almost surely.
- 5. (Durrett 2.2.5) Let X_1, X_2, \ldots be i.i.d. with $P(X_i > x) = \frac{e}{x \log x}$ for $x \ge e$. Construct a sequence of constants $\mu_n \to \infty$ such that $S_n/n \mu_n \to 0$ in probability. *Hint:* To get μ_n , use the truncation $XI_{X_i \le n}$ for $i = 1, \ldots, n$, and apply the union bound. (Remarkably, $\mathbb{E}X_1 = \infty$!).
- 6. (*Panchenko 2.2.10*) Let $\{X_n\}_{n\geq 1}$ be independent and exponentially distributed, i.e., with distribution function $F(x) = 1 e^{-x}$ for $x \geq 0$. Show that

$$\mathbb{P}\left(\limsup \frac{X_n}{\log n} = 1\right) = 1.$$