MAT 1600 : Probability I Assignment 4, due October 14, 2020

- 1. *Panchenko* 2.2.1 Let $(X_n)_{n\geq 1}$ be i.i.d. random variables with $\mathbb{E}|X_i|^p < \infty$ for some p > 0. Show that $\max_{i\leq n} n^{-\frac{1}{p}}|X_i| \to 0$ in probability as $n \to \infty$.
- (Probabilistic proofs of the Borel-Cantelli Lemma (2.2.4) Let (A_n)_{n≥a} be a sequence of events, and let N be the number of events that occur (i.e., N(ω) = #{n ≥ 1 : ω ∈ A_n}).
 - (a) If A_n is a sequence of events with $\sum_{n\geq 1} \mathbb{P}(A_n) < \infty$, then $\mathbb{P}(N < \infty) = 1$. (Consider the expectation of N.)
 - (b) If the events are independent and $\sum_{n\geq 1} \mathbb{P}(A_n) = \infty$, then $\mathbb{P}(N < \infty) = 0$. (You can start, for example, by showing that $\mathbb{P}(N = 0) = 0$.)
- 3. Weak LLN for U-statistics (Panchenko 2.2.2)
 - (a) Look up U-Statistic on Wikipedia.
 - (b) If $(X_n)_{n\geq 0}$ are i.i.d. with mean μ and variance $\sigma^2 < \infty$, show that

$$\binom{n}{2}^{-1} \sum_{1 \le i < j \le n} X_i X_j \to \mu^2$$

in probability as $n \to \infty$.

4. (*Panchenko 2.2.3*) If $u : [0,1]^n \to \mathbb{R}$ is continuous, prove that

$$\sum_{0 \le j_1, \dots, j_k \le n} u\left(\frac{j_1}{n}, \dots, \frac{j_k}{n}\right) \prod_{i \le k} \binom{n}{j_i} x_i^{j_i} (1-x_i)^{n-j_i} \longrightarrow u(x_1, \dots, x_n)$$

as $n \to \infty$, uniformly on $[0, 1]^k$.

5. (*Panchenko* 2.1.7) Suppose that the chances of winning the jackpot in a lottery is 1:139,000,000. Assuming that 100,000,000 people played independently of each other, estimate the probability that 3 of them will have to share the jackpot. Give a bound on the quality of your estimate.

6. *Monte Carlo integration (Durrett 2.2.3)* Let f be a Borel measurable, Lebesgue integrable function on the unit interval [0, 1]. The objective is to construct a probabilistic method for computing the integral

$$I = \int_0^1 f(x) \, dx$$

Let U_1, U_2, \ldots be independent and uniformly distributed on [0, 1], and let

$$I_n = \frac{1}{n} \left(f(U_1) + \dots + f(U_n) \right)$$

be average of the first n values.

- (a) Show that $I_n \to I$ in probability.
- (b) If, moreover, $\int |f(x)|^2 dx < \infty$, use Chebyshev's inequality to estimate

$$P(|I_n - I|) > an^{1/2}$$
, for $a > 0$.

Remark. This method for computing integrals can be adapted (by change of variables) to numerically integrate functions of many variables over complicated regions.