MAT 1600 : Probability I Assignment 3, due October 7, 2020

- 1. Chebyshev's inequality is and is not sharp (Durrett 1.6.2)
 - (a) For fixed a > 0, find a random variable X such

$$\mathbb{P}(|X| \ge a) = \frac{E(X^2)}{a^2}$$

(b) On the other hand, if X is a random variable with $0 < E(X^2) < \infty$, then

$$\lim_{a \to \infty} a^2 \mathbb{P}(|X| \ge a) = 0$$

2. The Hoeffding-Chernoff inequality for fluctuations of size $t \sim \sqrt{n}$ (Panchenko 2.1.2) In the setting of Theorem 2.2 show that, for s > 0.

$$\mathbb{P}\left(\frac{1}{\sqrt{n}}\sum_{i=1}^{n}(X_i-\mu)\geq s\right)\leq \exp\left(-\frac{s^2}{2\mu(1-\mu)}+O(n^{-\frac{1}{2}})\right).$$

3. (*Panchenko 2.1.5*) Suppose that the random variables $X_1, \ldots, X_n, Y_1, \ldots, Y_n$ are independent and, for all *i*, X_i and Y_i have the same distribution. Prove that

$$\mathbb{P}\left(\sum_{i=1}^{n} (X_i - Y_i) \ge \sqrt{2t \sum_{i=1}^{n} (X_i - Y_i)^2}\right) \le e^{-t}, \qquad (t > 0).$$

Hint: Think about a way to introduce Bernoulli $B(\frac{1}{2})$ variables ε_i into the problem and then apply Hoeffding's inequality.

4. Continuous functions, cont'd from last week's Problem 4 (Panchenko 1.3.2) Let \mathcal{A} be the cylindrical σ -algebra in $\mathbb{R}^{[0,1]}$, and let $\Omega \subset [0,1]^{\mathbb{R}}$ be the subset of all continuous functions on [0,1]. Consider the σ -algebra

$$\mathcal{B} := \{A \cap \Omega : A \in \mathcal{A}\}$$

on Ω , consisting of the continuous functions in the cylindrical σ -algebra. Show that \mathcal{B} contains the set

$$C := \left\{ \omega \in \Omega : \int_0^1 \omega(t) \, dt < 1 \right\} \, .$$

(*Remark.* I switched the roles of A and B — makes more sense to me this way.)

5. Waiting for success

Consider a sequence of independent tosses of a coin that shows Heads with probability p, and Tails with probability q = 1 - p. Let X_i be indicator that the *i*th toss comes up Heads. Let T_n be the number of the toss on which Heads appears for the *n*-th time.

- (a) Geometric distribution Find the distribution of T_1 , and compute its expectation, variance, and moment-generating function.
- (b) Negative binomial distribution. Write the distribution $\mathbb{P}(T_n = t)$ in terms of suitable Binomial (n, p) random variables. (Do not try to simplify the formula.)
- (c) Show that $Y_1 = T_1$ and $Y_n = T_n T_{n-1}$, n = 2, 3, ... are all independent and identically distributed. Use this to compute the mean $\mathbb{E}T_n$, the variance $\operatorname{Var}(T_n)$, and the moment-generating function $\mathbb{E}e^{\lambda T_n}$.
- 6. Consider again the repeated coin toss described in the previous problem, and fix $n \ge 1$. Let

$$\sigma(T_n) = \{T_n^{-1}(A), A \subset \mathbb{N}\}\$$

be the σ -algebra generated by the random variable T_k . For $j \ge 1$, find the conditional expectation $\mathbb{E}(X_j|T_n)$. (Express your answer as a random variable $f(T_n)$.)