MAT 1600 : Probability I
 Assignment 3, due October 7, 2020

1. Chebyshev's inequality is and is not sharp (Durrett 1.6.2)
(a) For fixed $a>0$, find a random variable X such

$$
\mathbb{P}(|X| \geq a)=\frac{E\left(X^{2}\right)}{a^{2}}
$$

(b) On the other hand, if X is a random variable with $0<E\left(X^{2}\right)<\infty$, then

$$
\lim _{a \rightarrow \infty} a^{2} \mathbb{P}(|X| \geq a)=0
$$

2. The Hoeffding-Chernoff inequality for fluctuations of size $t \sim \sqrt{n}$ (Panchenko 2.1.2) In the setting of Theorem 2.2 show that, for $s>0$.

$$
\mathbb{P}\left(\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(X_{i}-\mu\right) \geq s\right) \leq \exp \left(-\frac{s^{2}}{2 \mu(1-\mu)}+O\left(n^{-\frac{1}{2}}\right)\right)
$$

3. (Panchenko 2.1.5) Suppose that the random variables $X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}$ are independent and, for all i, X_{i} and Y_{i} have the same distribution. Prove that

$$
\mathbb{P}\left(\sum_{i=1}^{n}\left(X_{i}-Y_{i}\right) \geq \sqrt{2 t \sum_{i=1}^{n}\left(X_{i}-Y_{i}\right)^{2}}\right) \leq e^{-t}, \quad(t>0)
$$

Hint: Think about a way to introduce Bernoulli $B\left(\frac{1}{2}\right)$ variables ε_{i} into the problem and then apply Hoeffding's inequality.
4. Continuous functions, cont'd from last week's Problem 4 (Panchenko 1.3.2)

Let \mathcal{A} be the cylindrical σ-algebra in $\mathbb{R}^{[0,1]}$, and let $\Omega \subset[0,1]^{\mathbb{R}}$ be the subset of all continuous functions on $[0,1]$. Consider the σ-algebra

$$
\mathcal{B}:=\{A \cap \Omega: A \in \mathcal{A}\}
$$

on Ω, consisting of the continuous functions in the cylindrical σ-algebra. Show that \mathcal{B} contains the set

$$
C:=\left\{\omega \in \Omega: \int_{0}^{1} \omega(t) d t<1\right\} .
$$

(Remark. I switched the roles of \mathcal{A} and \mathcal{B} — makes more sense to me this way.)
5. Waiting for success

Consider a sequence of independent tosses of a coin that shows Heads with probability p, and Tails with probability $q=1-p$. Let X_{i} be indicator that the i th toss comes up Heads. Let T_{n} be the number of the toss on which Heads appears for the n-th time.
(a) Geometric distribution Find the distribution of T_{1}, and compute its expectation, variance, and moment-generating function.
(b) Negative binomial distribution. Write the distribution $\mathbb{P}\left(T_{n}=t\right)$ in terms of suitable Binomial (n, p) random variables. (Do not try to simplify the formula.)
(c) Show that $Y_{1}=T_{1}$ and $Y_{n}=T_{n}-T_{n-1}, n=2,3, \ldots$ are all independent and identically distributed. Use this to compute the mean $\mathbb{E} T_{n}$, the variance $\operatorname{Var}\left(T_{n}\right)$, and the momentgenerating function $\mathbb{E} e^{\lambda T_{n}}$.
6. Consider again the repeated coin toss described in the previous problem, and fix $n \geq 1$. Let

$$
\sigma\left(T_{n}\right)=\left\{T_{n}^{-1}(A), A \subset \mathbb{N}\right\}
$$

be the σ-algebra generated by the random variable T_{k}. For $j \geq 1$, find the conditional expectation $\mathbb{E}\left(X_{j} \mid T_{n}\right)$. (Express your answer as a random variable $f\left(T_{n}\right)$.)

