MAT 1600 : Probability I
 Assignment 2, due September 30, 2020

1. (Durrett 2.1.11) Find four random variables taking values in $\{-1,0,1\}$ so that any three are independent but all four are not. (Hint: Consider products of independent random variables.)
2. The Vitali-Hahn-Saks theorem

Let $\left(\mathbb{P}_{n}\right)_{n \geq 1}$ be a sequence of probability measures on (Ω, \mathcal{A}). Suppose that

$$
m(A):=\lim _{n \rightarrow \infty} \mathbb{P}_{n}(A)
$$

exists for each $A \in \mathcal{A}$. Prove that m is a measure. Remark: In this generality, the theorem is hard (though it has an elementary proof). I will post an outline on Friday.
3. (Durrett 1.3.8) Let X, Y be random variables, and let $\sigma(X)$ be the σ-algebragenerated by X. Show that Y is measurable with respect to $\sigma(X)$, if and only if $Y=f(X)$ for some measurable function $f: \mathbb{R} \rightarrow \mathbb{R}$. (Hint: First consider the case where Y is a simple function.)
4. Continuous functions (Panchenko 1.3.1)

Does the set $C([0,1])$ belong to the cylindrical σ-algebra \mathcal{A} on $\mathbb{R}^{[0,1]}$?
(Panchenko's hint: An exercise in Section 1 might be helpful.)
5. Uncorrelated but not independent (Durrett 2.1.7) Consider $\Omega=(0,1)$, with the standard Borel σ-algebra and Lebesgue measure. For positive integers $n \neq m$, show that the random variables $X(\omega)=\sin (2 \pi n \omega)$ and $Y(\omega)=\sin (2 \pi m \omega)$ satisfy $E(X Y)=E X=E Y=0$. But X and Y are not independent.
6. Let $X \sim \operatorname{Poiss}(\lambda)$ and $Y \sim \operatorname{Poiss}(\mu)$ be independent random variables with Poisson distribution, as defined in Example 1.1.1.
(a) Determine the distribution of $Z=X+Y$.

Conversely, let $N \sim \operatorname{Poiss}(\lambda)$ be a Poisson-distributed random variable. If $N=n$, toss a biased coin n times and let N_{1} be the number of Heads you get.
Then $P\left(N_{1}=k \mid N=n\right)=\binom{n}{k} p^{k}(1-p)^{n-k}$, where p is the bias.
(b) Argue that $N_{0}=N-N_{1}$ and N_{1} are independent, and determine their distribution. (Avoid excessive computation.)

