MAT 1600 : Probability I Midterm Test, October 26, 2016

(Four problems; 20 points each. Time: 90 minutes.)

Please be brief but justify your answers, citing relevant theorems.

1. Let X, Y be independent random variables.

(a) If the distribution function of X is continuous, does it follow that the distribution function of the sum X + Y is continuous? Why / why not ?

(b) Suppose X, Y are nonnegative and have probability densities f, g. Find the probability density of the product XY.

2. Consider an infinite sequence of tosses of a single biased coin that produces 'Heads' with probability p. By Kolmogoroff's extension theorem, this defines a probability measure P_p on the product space {0,1}^N. Let μ_p be the measure on the unit interval that corresponds to P_p via the binary representation of real numbers.

(a) If $0 , show that the function <math>F_p(x) = \mu_p(0, x]$ is continuous.

(b) Show that the measures μ_p are mutually singular, by finding events A_p for each p such that $\mu_p(A_p) = 1$, but $A_p \cap A_q = \emptyset$ for $p \neq q$. In particular, $\mu_p(A_q) = 0$ when $p \neq q$.

Hint: Work with the measures P_p and appeal to the Law of Large Numbers (which one?)

3. Let X₁, X₂,... be i.i.d. with P(X_i > x) = e^{-x}, and let M_n = max_{1≤m≤n} X_m.
(a) Show that lim sup X_n/log n = 1 almost surely.
(b) Conclude that lim A_{n→∞} M_n/log n = 1 almost surely.

4. Given a random variable X, define its moment-generating function by

$$\phi(s) = E(e^{sX}), \quad s \in \mathbb{R}.$$

(Note that $\phi(s)$ is always well-defined, but may take the value $+\infty$.) (a) Show that $\log \phi$ is convex, i.e.,

$$\phi((1-\lambda)s+\lambda t) \le (\phi(s))^{1-\lambda} (\phi(t))^{\lambda}$$

for all $s, t \ge 0$ and all $\lambda \in (0, 1)$. (*Hint:* Hölder's inequality.)

(b) Assuming X has finite mean, show that $E(X) \leq \frac{1}{s} \log \phi(s)$ for all s > 0.

(c) Prove the Chernoff bound: For any x > 0,

$$P(X > x) \le \inf_{s>0} \left\{ e^{-sx} \phi(s) \right\} \ .$$

(d) Assume that X_1, X_2, \ldots are i.i.d., with moment-generating function $\phi(s)$. Show that their sum $S_n = \sum_{i \le n} X_i$ satisfies

$$P\left(\frac{S_n}{n} > x\right) \le \left(\inf_{s>0} e^{-sx}\phi(s)\right)^n.$$