MAT 1001 / 458 : Real Analysis II
 Final Exam, April 13, 2020

(Instructor: Burchard. Six problems; 20 points each. 3 hours, no aids allowed)
Please be brief but justify your answers, citing relevant theorems.

1. State ...
(a) ...the Riesz-Thorin interpolation theorem (for $1<p, q<\infty$);
(b) ... the closed graph theorem;
(c) ...the uniform boundedness principle;
(d) ... the Banach-Alaoglu theorem (say how it applies to L^{p}).

Remember to give the assumptions!
2. (Dual characterization of the norm.)

Let $L: L^{p} \rightarrow L^{q}$ be a bounded linear transformation. Justify the formula

$$
\|L\|=\sup _{\|f\|_{p}=\|g\|_{q^{\prime}}=1} \int(L f) g d y
$$

for $1 \leq p, q<\infty$. Here, q^{\prime} is the Hölder dual exponent to q.
3. (An application of the Hahn-Banach theorem.)

Let X be a normed vector space, and let $S=\{x \in X:\|x\|=1\}$ be its closed unit sphere.
(a) If Y is a proper closed subspace of X, then for every $\varepsilon>0$ there is $x \in S$ such that $\operatorname{dist}(x, Y) \geq 1-\epsilon$.
(b) Deduce that X is finite-dimensional if and only if the unit ball of X is compact.
4. (Convolution operators on S^{1}.)

Let K be a 2π-periodic function that is integrable over $(-\pi, \pi)$. If f is 2π-periodic and square integrable, define

$$
(L f)(x):=\int_{-\pi}^{\pi} K(x-y) f(y) d y
$$

that is, $L f=K * f$.
(a) For each integer k, show that $e_{k}(x)=e^{i k x}$ is an eigenfunction L, and determine the corresponding eigenvalue λ_{k}.
(b) Show that L is a bounded linear operator on $L^{2}(-\pi, \pi)$, with norm $\|L\| \leq \sup _{k}\left|\lambda_{k}\right| \leq$ $\|K\|_{L^{1}}$.
(c) Prove that L is compact (using, for example, the Riemann-Lebesgue lemma.)
5. (Algebra property of Sobolev spaces.)

For $s \in \mathbb{R}$, we have defined (in Folland Section 9.3) the spaces

$$
H_{s}:=\left\{f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) \left\lvert\,\left(1+|\xi|^{2}\right)^{\frac{s}{2}} \hat{f} \in L^{2}\left(\mathbb{R}^{n}\right)\right.\right\}
$$

with the norm given by $\|u\|_{H_{s}}:=\left(\int_{\mathbb{R}^{n}}|\hat{u}(\xi)|^{2}\left(1+|\xi|^{2}\right)^{s} d \xi\right)^{\frac{1}{2}}$. Here, \mathcal{S} is the Schwarz space, and \mathcal{S}^{\prime} is its dual. As discussed in class, for integer values of s this space agrees with $W^{s, 2}\left(\mathbb{R}^{n}\right)$ (you are not asked to prove this.)
Assume $s>\frac{n}{2}$. You will show that the product of two functions in H_{s} is again in H_{s}.
(a) Prove that there exists a constant $C_{1}>0$ (depending on s and n) such that

$$
\|\hat{u}\|_{L^{1}} \leq C_{1}\|u\|_{H_{s}} \quad \text { for all } u \in \mathcal{S} .
$$

(b) Let $u, v \in \mathcal{S}$. Write down the Fourier transform of their product, $\widehat{u v}$.
(c) Deduce that

$$
\|u v\|_{s}^{2} \leq 2 C_{2} C_{1}^{2}\|u\|_{H_{s}}^{2}\|v\|_{H_{s}}^{2} \quad \text { for all } u, v \in \mathcal{S} .
$$

You may use without proof that there is a constant $C_{2}>0$ (depending on s) such that

$$
\left(1+|\xi|^{2}\right)^{s} \leq C_{2}\left(\left(1+|\xi-\eta|^{2}\right)^{s}+\left(1+|\eta|^{2}\right)^{s}\right) \quad \text { for all } \xi, \eta \in \mathbb{R}^{n}
$$

(d) Conclude that $u, v \in H_{s} \Rightarrow(u v) \in H_{s}$. Please explain and justify your conclusion!
6. (The direct method.)

Consider the problem of minimizing

$$
\mathcal{E}(u):=\int_{\mathbb{R}^{3}} \frac{1}{2}|\nabla u|^{2}+f(x) u(x) d x
$$

over $u \in W^{1,2}\left(\mathbb{R}^{3}\right)$. Here, $f \in L^{\frac{6}{5}}$ is a given function, and $W^{1,2}$ is the Sobolev space of L^{2}-functions whose distributional gradient also lies in L^{2}.
(a) Apply a Sobolev inequality to the gradient term to obtain a lower bound on \mathcal{E}.
(b) Let $\left(u_{k}\right)_{k \geq 1}$ be a minimizing sequence, i.e., $\mathcal{E}\left(u_{k}\right) \rightarrow \inf \mathcal{E}$ as $k \rightarrow \infty$.

Prove that this sequence is bounded in $W^{1,2}$.
(c) After passing to a subsequence, there exist L^{2} functions $u^{*}, v_{1}^{*}, \ldots, v_{n}^{*}$ such that

$$
u_{k} \rightharpoonup u^{*}, \quad \partial_{x_{i}} u_{k} \rightharpoonup v_{i}^{*} \quad(i=1, \ldots, n)
$$

weakly in L^{2}. (Why?) Prove that $v^{*}=\nabla u^{*}$.
(d) Conclude that \mathcal{E} attains its minimum at u^{*}.

