
MAT 1001 / 458 : Real Analysis II
Final Exam, April 13, 2020
(Instructor: Burchard. Six problems; 20 points each. 3 hours, no aids allowed)

Please be brief but justify your answers, citing relevant theorems.

1. State . . .

(a) . . . the Riesz-Thorin interpolation theorem (for 1 < p, q <∞);

(b) . . . the closed graph theorem;

(c) . . . the uniform boundedness principle;

(d) . . . the Banach-Alaoglu theorem (say how it applies to Lp).

Remember to give the assumptions!

2. (Dual characterization of the norm.)
Let L : Lp → Lq be a bounded linear transformation. Justify the formula

||L|| = sup
||f ||p=||g||q′=1

∫
(Lf)g dy

for 1 ≤ p, q <∞. Here, q′ is the Hölder dual exponent to q.

3. (An application of the Hahn-Banach theorem.)
Let X be a normed vector space, and let S = {x ∈ X : ||x|| = 1} be its closed unit sphere.

(a) If Y is a proper closed subspace of X , then for every ε > 0 there is x ∈ S such that
dist(x, Y ) ≥ 1− ε.

(b) Deduce that X is finite-dimensional if and only if the unit ball of X is compact.

4. (Convolution operators on S1.)
Let K be a 2π-periodic function that is integrable over (−π, π). If f is 2π-periodic and
square integrable, define

(Lf)(x) :=

∫ π

−π
K(x− y)f(y) dy ,

that is, Lf = K ∗ f .



(a) For each integer k, show that ek(x) = eikx is an eigenfunction L, and determine the
corresponding eigenvalue λk.

(b) Show that L is a bounded linear operator on L2(−π, π), with norm ||L|| ≤ supk |λk| ≤
||K||L1 .

(c) Prove that L is compact (using, for example, the Riemann-Lebesgue lemma.)

5. (Algebra property of Sobolev spaces.)
For s ∈ R, we have defined (in Folland Section 9.3) the spaces

Hs :=
{
f ∈ S ′(Rn)

∣∣ (1 + |ξ|2) s
2 f̂ ∈ L2(Rn)

}
,

with the norm given by ||u||Hs :=
(∫

Rn |û(ξ)|2(1 + |ξ|2)s dξ
) 1

2 . Here, S is the Schwarz
space, and S ′ is its dual. As discussed in class, for integer values of s this space agrees with
W s,2(Rn) (you are not asked to prove this.)

Assume s > n
2
. You will show that the product of two functions in Hs is again in Hs.

(a) Prove that there exists a constant C1 > 0 (depending on s and n) such that

||û||L1 ≤ C1||u||Hs for all u ∈ S .

(b) Let u, v ∈ S. Write down the Fourier transform of their product, ûv.
(c) Deduce that

||uv||2s ≤ 2C2C
2
1 ||u||2Hs

||v||2Hs
for all u, v ∈ S .

You may use without proof that there is a constant C2 > 0 (depending on s) such that

(1 + |ξ|2)s ≤ C2

(
(1 + |ξ − η|2)s + (1 + |η|2)s

)
for all ξ, η ∈ Rn .

(d) Conclude that u, v ∈ Hs ⇒ (uv) ∈ Hs. Please explain and justify your conclusion!

6. (The direct method.)
Consider the problem of minimizing

E(u) :=
∫
R3

1

2
|∇u|2 + f(x)u(x) dx

over u ∈ W 1,2(R3). Here, f ∈ L
6
5 is a given function, and W 1,2 is the Sobolev space of

L2-functions whose distributional gradient also lies in L2.

(a) Apply a Sobolev inequality to the gradient term to obtain a lower bound on E .
(b) Let (uk)k≥1 be a minimizing sequence, i.e., E(uk)→ inf E as k →∞.

Prove that this sequence is bounded in W 1,2.
(c) After passing to a subsequence, there exist L2 functions u∗, v∗1, . . . , v

∗
n such that

uk ⇀ u∗ , ∂xiuk ⇀ v∗i (i = 1, . . . , n)

weakly in L2. (Why?) Prove that v∗ = ∇u∗.
(d) Conclude that E attains its minimum at u∗.


