MAT 1001 / 458 : Real Analysis II Final Exam, April 8, 2015

(Instructor: Burchard. Six problems; 20 points each. 3 hours, no aids allowed)

Please be brief but justify your answers, citing relevant theorems.

- 1. Please state ...
 - (a) ... Bessel's inequality;
 - (b) ... the open mapping theorem;
 - (c) ... the Krein-Milman theorem;
 - (d) ... the isoperimetric inequality.
- 2. Let *L* be a compact linear operator on an infinite-dimensional Banach space *X*. Prove, from the definitions:
 - (a) L is bounded;
 - (b) L cannot have a bounded inverse.
- 3. Let $L^2 = L^2(-\pi, \pi)$ be the space of 2π -periodic square integrable functions on the real line. Given $f \in L^2$ and $0 \le r \le 1$, define a function $P_r f \in L^2$ by

$$P_r f(x) = \sum_{k \ge 0} \hat{f}(k) r^k e^{ikx} \,.$$

- (a) Show that the series converges absolutely for r < 1.
- (b) For r < 1, find a 2π -periodic function H_r such that

$$P_r f(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_r(x-y) f(y) \, dy \, .$$

(c) Prove that

$$\lim_{r \to 1, r < 1} ||P_r f - P_1 f||_2 = 0 \quad \text{for all } f \in L^2.$$

(d) However, P_r does not converge to P_1 in the operator norm.

- continued on next page -

4. True or False? Please provide reasons and missing assumptions (as needed).
(a) If F ∈ D' is a distribution on ℝ^d, then

$$\partial_{x_i}\partial_{x_i}F = \partial_{x_i}\partial_{x_i}F.$$

(b) If (f_n) is a sequence in $L^2(-\pi,\pi)$, and $(u_k)_{k\geq 1}$ is an orthonormal basis, then

$$f_n \rightharpoonup f$$
 weakly in $L^2 \iff \lim_{n \to \infty} \langle f_n, u_k \rangle = \langle f, u_k \rangle$ for all $k \ge 1$.

- 5. (a) Show that the rationals, Q, cannot be written as a countable intersection of open sets in R.
 (b) Doesn't this contradict the outer regularity of Lebesgue measure? Please explain!
- 6. (a) Define the Sobolev space $W^{1,p}(\mathbb{R}^d)$.

(b) *Morrey's inequality* states that, for suitable values of p, d, and α , there exists a constant $C = C(p, d, \alpha)$ such that

$$\sup_{x \neq y} \frac{f(x) - f(y)}{|x - y|^{\alpha}} \le C ||\nabla f||_p$$

for every smooth function f with compact support in \mathbb{R}^d . Derive a necessary condition on the relation between d, p, and α . (*Hint:* Scaling)

It turns out that Morrey's inequality indeed holds, so long as $0 < \alpha \leq 1$. Moreover

$$\sup_{x \in \mathbb{R}^d} |f(x)| \le C ||f||_{W^{1,p}}$$

for every smooth function f with compact support. (You may use this without proof.)

(c) Show that the identity map on C_c^{∞} extends to a bounded linear transformation from $W^{1,p}$ to $C(\mathbb{R}^d)$, the space of bounded continuous functions on \mathbb{R}^d endowed with the sup norm.