## MAT 1001 / 458 : Real Analysis II

Final Exam, April 9, 2014
(Instructor: Burchard. Six problems; 20 points each. $\mathbf{3}$ hours, no aids allowed)
Please be brief but justify your answers, citing relevant theorems.

1. Please state ...
(a) ... the Open Mapping Theorem;
(b) ... the Riesz Representation Theorem for $L^{p}$ (with $1<p<\infty$ );
(c) ... the Spectral Theorem.
2. Let $X$ be a Banach space.
(a) Define the dual space, $X^{*}$, and its norm.
(b) Define weak convergence in $X$.
(c) Suppose that $X$ is reflexive, i.e., $X^{* *}=X$.

Let $x \in X$ be a point, let $V \subset X$ be a closed subspace, and let

$$
d(x, V):=\inf _{y \in V}\|x-y\|
$$

be the distance from $x$ to $V$. Prove that there exists a point $v \in V$ such that

$$
d(x, V)=\|x-v\| .
$$

Hint: Consider a minimizing sequence $\left(v_{n}\right)$ in $V$, i.e., a sequence with

$$
\lim \left\|x-v_{n}\right\|=d(x, V),
$$

and extract a weakly convergent subsequence.
3. (a) Define the Fourier transform $\hat{f}$ of an integrable function $f$ on $\mathbb{R}^{d}$.
(b) Give an example of a function on $\mathbb{R}^{d}$ that lies in $L^{2}$ but not in $L^{1}$. How do you compute the Fourier transform of such a function? Please justify why your procedure works!
(c) The Fourier transform $\mathcal{F}: f \mapsto \hat{f}$ defines a linear transformation from $L^{1}$ to $L^{\infty}$. Is it continuous? injective? surjective?
4. (a) Define the Dirac $\delta$-distribution (the point mass at the origin) on $\mathbb{R}^{d}$.

Briefly explain why it lies in $\mathcal{S}^{\prime}$, the space of tempered distributions (the dual of Schwartz space).
(b) Determine its Fourier transform $\hat{\delta}(k)$. Use it to "solve" the equation

$$
\Delta \Phi=\delta
$$

on $\mathbb{R}^{d}$ by finding a formula for $\hat{\Phi}(k)$. Argue that $\Phi \in \mathcal{S}^{\prime}$.
Note: Do not try to find a formula for $\Phi(x)$.
(c) If $f$ is a Schwarz function, prove that the function $u=\Phi * f$ solves Poisson's equation

$$
\Delta u=f
$$

Be sure to explain what you mean by "solve".
Remark: It turns out that $\Phi$ is represented by a function, the fundamental solution of Laplace's equation, given by $\Phi(x)=C_{x}|x|^{2-d}$ in dimension $d>2$. (You are not asked to prove this.)
5. (a) Let $f$ be a smooth function on $\mathbb{R}^{d}$ with compact support. Define the translation of $f$ by a vector $v \in \mathbb{R}^{d}$ as $\tau_{v} f(x)=f(x-v)$. Prove that, for $p \in[1, \infty)$,

$$
\left|\left|f-\tau_{v} f\right|_{p} \leq\left||\nabla f|_{p}\right| v\right|
$$

Hint: Use that $f(x)-f(x-v)=\int_{0}^{1} \nabla f(x-t v) \cdot v d t$, and integrate over $x \in \mathbb{R}^{d}$.
(b) Argue that the inequality extends to all $f \in W^{1, p}$.
(c) Setting $p=1$, conclude that $W^{1,1} \subset L^{q}$ for all $q$ with $1 \leq q \leq d /(d-1)$.

Hint: Use the Sobolev inequality.
6. Let $C \subset \mathbb{R}^{d+1}$ be a compact convex set of positive measure. Denote by

$$
C(h)=\left\{x=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d} \mid\left(x_{1}, \ldots, x_{d}, h\right) \in C\right\}
$$

its cross section at height $h$. Clearly, each cross section is again compact and convex. Let $\gamma(h)=m(C(h)$ be its $d$-dimensional Lebesgue measure.
(a) Prove that $\log \gamma$ is concave in $h$, i.e.,

$$
\left.\log \gamma\left((1-t) h_{0}+t h_{1}\right)\right) \leq(1-t) \log \gamma\left(h_{0}\right)+t \gamma\left(h_{1}\right)
$$

for all $h_{0}, h_{1}$ with $\left.\gamma\left(h_{i}\right)>0\right)$ and all $t \in(0,1)$.
Hint: Brunn-Minkowski. (A sketch will help.)
(b) If, in addition, $C$ is symmetric under the reflection $x \mapsto-x$, conclude that $\gamma$ assumes its maximum at $h=0$, i.e., the central cross section has the largest area.

