
4 Hilbert Spaces: An
Introduction

Born barely 10 years ago, the theory of integral equa-
tions has attracted wide attention as much as for its
inherent interest as for the importance of its applica-
tions. Several of its results are already classic, and no
one doubts that in a few years every course in analysis
will devote a chapter to it.

M. Plancherel, 1912

There are two reasons that account for the importance of Hilbert
spaces. First, they arise as the natural infinite-dimensional generaliza-
tions of Euclidean spaces, and as such, they enjoy the familiar properties
of orthogonality, complemented by the important feature of complete-
ness. Second, the theory of Hilbert spaces serves both as a conceptual
framework and as a language that formulates some basic arguments in
analysis in a more abstract setting.

For us the immediate link with integration theory occurs because of
the example of the Lebesgue space L2(Rd). The related example of
L2([−π, π]) is what connects Hilbert spaces with Fourier series. The
latter Hilbert space can also be used in an elegant way to analyze the
boundary behavior of bounded holomorphic functions in the unit disc.

A basic aspect of the theory of Hilbert spaces, as in the familiar finite-
dimensional case, is the study of their linear transformations. Given the
introductory nature of this chapter, we limit ourselves to rather brief
discussions of several classes of such operators: unitary mappings, pro-
jections, linear functionals, and compact operators.

1 The Hilbert space L2

A prime example of a Hilbert space is the collection of square inte-
grable functions on Rd, which is denoted by L2(Rd), and consists of
all complex-valued measurable functions f that satisfy

∫

Rd

|f(x)|2 dx < ∞.
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The resulting L2(Rd)-norm of f is defined by

‖f‖L2(Rd) =
(∫

Rd

|f(x)|2 dx

)1/2

.

The reader should compare those definitions with these for the space
L1(Rd) of integrable functions and its norm that were described in Sec-
tion 2, Chapter 2. A crucial difference is that L2 has an inner product,
which L1 does not. Some relative inclusion relations between those spaces
are taken up in Exercise 5.

The space L2(Rd) is naturally equipped with the following inner prod-
uct:

(f, g) =
∫

Rd

f(x)g(x) dx, whenever f, g ∈ L2(Rd),

which is intimately related to the L2-norm since

(f, f)1/2 = ‖f‖L2(Rd).

As in the case of integrable functions, the condition ‖f‖L2(Rd) = 0 only
implies f(x) = 0 almost everywhere. Therefore, we in fact identify func-
tions that are equal almost everywhere, and define L2(Rd) as the space
of equivalence classes under this identification. However, in practice it is
often convenient to think of elements in L2(Rd) as functions, and not as
equivalence classes of functions.

For the definition of the inner product (f, g) to be meaningful we need
to know that fg is integrable on Rd whenever f and g belong to L2(Rd).
This and other basic properties of the space of square integrable functions
are gathered in the next proposition.

In the rest of this chapter we shall denote the L2-norm by ‖ · ‖ (drop-
ping the subscript L2(Rd)) unless stated otherwise.

Proposition 1.1 The space L2(Rd) has the following properties:

(i) L2(Rd) is a vector space.

(ii) f(x)g(x) is integrable whenever f, g ∈ L2(Rd), and the Cauchy-
Schwarz inequality holds: |(f, g)| ≤ ‖f‖ ‖g‖.

(iii) If g ∈ L2(Rd) is fixed, the map f 7→ (f, g) is linear in f , and also
(f, g) = (g, f).

(iv) The triangle inequality holds: ‖f + g‖ ≤ ‖f‖+ ‖g‖.
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Proof. If f, g ∈ L2(Rd), then since |f(x) + g(x)| ≤ 2max(|f(x)|, |g(x)|),
we have

|f(x) + g(x)|2 ≤ 4(|f(x)|2 + |g(x)|2),

therefore ∫
|f + g|2 ≤ 4

∫
|f |2 + 4

∫
|g|2 < ∞,

hence f + g ∈ L2(Rd). Also, if λ ∈ C we clearly have λf ∈ L2(Rd), and
part (i) is proved.

To see why fg is integrable whenever f and g are in L2(Rd), it suffices
to recall that for all A,B ≥ 0, one has 2AB ≤ A2 + B2, so that

(1)
∫
|fg| ≤ 1

2
[‖f‖2 + ‖g‖2] .

To prove the Cauchy-Schwarz inequality, we first observe that if either
‖f‖ = 0 or ‖g‖ = 0, then fg = 0 is zero almost everywhere, hence (f, g) =
0 and the inequality is obvious. Next, if we assume that ‖f‖ = ‖g‖ = 1,
then we get the desired inequality |(f, g)| ≤ 1. This follows from the fact
that |(f, g)| ≤ ∫ |fg|, and inequality (1). Finally, in the case when both
‖f‖ and ‖g‖ are non-zero, we normalize f and g by setting

f̃ = f/‖f‖ and g̃ = g/‖g‖,

so that ‖f̃‖ = ‖g̃‖ = 1. By our previous observation we then find

|(f̃ , g̃)| ≤ 1.

Multiplying both sides of the above by ‖f‖ ‖g‖ yields the Cauchy-Schwarz
inequality.

Part (iii) follows from the linearity of the integral.
Finally, to prove the triangle inequality, we use the Cauchy-Schwarz

inequality as follows:

‖f + g‖2 = (f + g, f + g)
= ‖f‖2 + (f, g) + (g, f) + ‖g‖2
≤ ‖f‖2 + 2 |(f, g)|+ ‖g‖2
≤ ‖f‖2 + 2 ‖f‖ ‖g‖+ ‖g‖2
= (‖f‖+ ‖g‖)2,

and taking square roots completes the argument.
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We turn our attention to the notion of a limit in the space L2(Rd).
The norm on L2 induces a metric d as follows: if f, g ∈ L2(Rd), then

d(f, g) = ‖f − g‖L2(Rd).

A sequence {fn} ⊂ L2(Rd) is said to be Cauchy if d(fn, fm) → 0 as
n,m →∞. Moreover, this sequence converges to f ∈ L2(Rd) if d(fn, f) →
0 as n →∞.

Theorem 1.2 The space L2(Rd) is complete in its metric.

In other words, every Cauchy sequence in L2(Rd) converges to a function
in L2(Rd). This theorem, which is in sharp contrast with the situation for
Riemann integrable functions, is a graphic illustration of the usefulness
of Lebesgue’s theory of integration. We elaborate on this point and its
relation to Fourier series in Section 3 below.

Proof. The argument given here follows closely the proof in Chapter 2
that L1 is complete. Let {fn}∞n=1 be a Cauchy sequence in L2, and
consider a subsequence {fnk

}∞k=1 of {fn} with the following property:

‖fnk+1 − fnk
‖ ≤ 2−k, for all k ≥ 1.

If we now consider the series whose convergence will be seen below,

f(x) = fn1(x) +
∞∑

k=1

(fnk+1(x)− fnk
(x))

and

g(x) = |fn1(x)|+
∞∑

k=1

|(fnk+1(x)− fnk
(x))|,

together the partial sums

SK(f)(x) = fn1(x) +
K∑

k=1

(fnk+1(x)− fnk
(x))

and

SK(g)(x) = |fn1(x)|+
K∑

k=1

|fnk+1(x)− fnk
(x)|,
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then the triangle inequality implies

‖SK(g)‖ ≤ ‖fn1‖+
K∑

k=1

‖fnk+1 − fnk
‖

≤ ‖fn1‖+
K∑

k=1

2−k.

Letting K tend to infinity, and applying the monotone convergence theo-
rem proves that

∫ |g|2 < ∞, and since |f | ≤ g, we must have f ∈ L2(Rd).
In particular, the series defining f converges almost everywhere, and

since (by construction of the telescopic series) the (K − 1)th partial sum
of this series is precisely fnK

, we find that

fnk
(x) → f(x) a.e. x.

To prove that fnk
→ f in L2(Rd) as well, we simply observe that |f −

SK(f)|2 ≤ (2g)2 for all K, and apply the dominated convergence theorem
to get ‖fnk

− f‖ → 0 as k tends to infinity.
Finally, the last step of the proof consists of recalling that {fn} is

Cauchy. Given ε, there exists N such that for all n,m > N we have
‖fn − fm‖ < ε/2. If nk is chosen so that nk > N , and ‖fnk

− f‖ < ε/2,
then the triangle inequality implies

‖fn − f‖ ≤ ‖fn − fnk
‖+ ‖fnk

− f‖ < ε

whenever n > N . This concludes the proof of the theorem.

An additional useful property of L2(Rd) is contained in the following
theorem.

Theorem 1.3 The space L2(Rd) is separable, in the sense that there
exists a countable collection {fk} of elements in L2(Rd) such that their
linear combinations are dense in L2(Rd).

Proof. Consider the family of functions of the form rχR(x), where r
is a complex number with rational real and imaginary parts, and R is
a rectangle in Rd with rational coordinates. We claim that finite linear
combinations of these type of functions are dense in L2(Rd).

Suppose f ∈ L2(Rd) and let ε > 0. Consider for each n ≥ 1 the func-
tion gn defined by

gn(x) =
{

f(x) if |x| ≤ n and |f(x)| ≤ n,
0 otherwise.
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Then |f − gn|2 ≤ 4|f |2 and gn(x) → f(x) almost everywhere.1 The dom-
inated convergence theorem implies that ‖f − gn‖2L2(Rd)

→ 0 as n tends
to infinity; therefore we have

‖f − gN‖L2(Rd) < ε/2 for some N .

Let g = gN , and note that g is a bounded function supported on a
bounded set; thus g ∈ L1(Rd). We may now find a step function ϕ so
that |ϕ| ≤ N and

∫ |g − ϕ| < ε2/16N (Theorem 2.4, Chapter 2). By re-
placing the coefficients and rectangles that appear in the canonical form
of ϕ by complex numbers with rational real and imaginary parts, and
rectangles with rational coordinates, we may find a ψ with |ψ| ≤ N and∫ |g − ψ| < ε2/8N . Finally, we note that

∫
|g − ψ|2 ≤ 2N

∫
|g − ψ| < ε2/4.

Consequently ‖g − ψ‖ < ε/2, therefore ‖f − ψ‖ < ε, and the proof is
complete.

The example L2(Rd) possesses all the characteristic properties of a
Hilbert space, and motivates the definition of the abstract version of this
concept.

2 Hilbert spaces

A set H is a Hilbert space if it satisfies the following:

(i) H is a vector space over C (or R).2

(ii) H is equipped with an inner product (·, ·), so that

• f 7→ (f, g) is linear on H for every fixed g ∈ H,

• (f, g) = (g, f),

• (f, f) ≥ 0 for all f ∈ H.

We let ‖f‖ = (f, f)1/2.

(iii) ‖f‖ = 0 if and only if f = 0.

1By definition f ∈ L2(Rd) implies that |f |2 is integrable, hence f(x) is finite for a.e x.
2At this stage we consider both cases, where the scalar field can be either C or R.

However, in many applications, such as in the context of Fourier analysis, one deals
primarily with Hilbert spaces over C.
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(iv) The Cauchy-Schwarz and triangle inequalities hold

|(f, g)| ≤ ‖f‖ ‖g‖ and ‖f + g‖ ≤ ‖f‖+ ‖g‖

for all f, g ∈ H.

(v) H is complete in the metric d(f, g) = ‖f − g‖.
(vi) H is separable.

We make two comments about the definition of a Hilbert space. First,
the Cauchy-Schwarz and triangle inequalities in (iv) are in fact easy
consequences of assumptions (i) and (ii). (See Exercise 1.) Second, we
make the requirement that H be separable because that is the case in
most applications encountered. That is not to say that there are no
interesting non-separable examples; one such example is described in
Problem 2.

Also, we remark that in the context of a Hilbert space we shall of-
ten write limn→∞ fn = f or fn → f to mean that limn→∞ ‖fn − f‖ = 0,
which is the same as d(fn, f) → 0.

We give some examples of Hilbert spaces.

Example 1. If E is a measurable subset of Rd with m(E) > 0, we let
L2(E) denote the space of square integrable functions that are supported
on E,

L2(E) =
{

f supported on E, so that
∫

E

|f(x)|2 dx < ∞
}

.

The inner product and norm on L2(E) are then

(f, g) =
∫

E

f(x)g(x) dx and ‖f‖ =
(∫

E

|f(x)|2 dx

)1/2

.

Once again, we consider two elements of L2(E) to be equivalent if they
differ only on a set of measure zero; this guarantees that ‖f‖ = 0 implies
f = 0. The properties (i) through (vi) follow from these of L2(Rd) proved
above.

Example 2. A simple example is the finite-dimensional complex Eu-
clidean space. Indeed,

CN = {(a1, . . . , aN ) : ak ∈ C}
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becomes a Hilbert space when equipped with the inner product

N∑

k=1

akbk,

where a = (a1, . . . , aN ) and b = (b1, . . . , bN ) are in CN . The norm is then

‖a‖ =

(
N∑

k=1

|ak|2
)1/2

.

One can formulate in the same way the real Hilbert space RN .

Example 3. An infinite-dimensional analogue of the above example is
the space `2(Z). By definition

`2(Z) =

{
(. . . , a−2, a−1, a0, a1, . . .) : ai ∈ C,

∞∑
n=−∞

|an|2 < ∞
}

.

If we denote infinite sequences by a and b, the inner product and norm
on `2(Z) are

(a, b) =
∞∑

k=−∞
akbk and ‖a‖ =

( ∞∑

k=−∞
|ak|2

)1/2

.

We leave the proof that `2(Z) is a Hilbert space as Exercise 4.
While this example is very simple, it will turn out that all infinite-

dimensional (separable) Hilbert spaces are `2(Z) in disguise.
Also, a slight variant of this space is `2(N), where we take only one-

sided sequences, that is,

`2(N) =

{
(a1, a2, . . .) : ai ∈ C,

∞∑
n=1

|an|2 < ∞
}

.

The inner product and norm are then defined in the same way with the
sums extending from n = 1 to ∞.

A characteristic feature of a Hilbert space is the notion of orthogo-
nality. This aspect, with its rich geometric and analytic consequences,
distinguishes Hilbert spaces from other normed vector spaces. We now
describe some of these properties.
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2.1 Orthogonality

Two elements f and g in a Hilbert space H with inner product (·, ·) are
orthogonal or perpendicular if

(f, g) = 0, and we then write f ⊥ g.

The first simple observation is that the usual theorem of Pythagoras
holds in the setting of abstract Hilbert spaces:

Proposition 2.1 If f ⊥ g, then ‖f + g‖2 = ‖f‖2 + ‖g‖2.
Proof. It suffices to note that (f, g) = 0 implies (g, f) = 0, and there-

fore

‖f + g‖2 = (f + g, f + g) = ‖f‖2 + (f, g) + (g, f) + ‖g‖2
= ‖f‖2 + ‖g‖2.

A finite or countably infinite subset {e1, e2, . . .} of a Hilbert space H
is orthonormal if

(ek, e`) =
{

1 when k = `,
0 when k 6= `.

In other words, each ek has unit norm and is orthogonal to e` whenever
` 6= k.

Proposition 2.2 If {ek}∞k=1 is orthonormal, and f =
∑

akek ∈ H where
the sum is finite, then

‖f‖2 =
∑

|ak|2.

The proof is a simple application of the Pythagorean theorem.

Given an orthonormal subset {e1, e2, . . .} = {ek}∞k=1 of H, a natural
problem is to determine whether this subset spans all of H, that is,
whether finite linear combinations of elements in {e1, e2, . . .} are dense
in H. If this is the case, we say that {ek}∞k=1 is an orthonormal basis
for H. If we are in the presence of an orthonormal basis, we might expect
that any f ∈ H takes the form

f =
∞∑

k=1

akek,
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for some constants ak ∈ C. In fact, taking the inner product of both
sides with ej , and recalling that {ek} is orthonormal yields (formally)

(f, ej) = aj .

This question is motivated by Fourier series. In fact, a good insight
into the theorem below is afforded by considering the case where H
is L2([−π, π]) with inner product (f, g) = 1

2π

∫ π

−π
f(x)g(x) dx, and the

orthonormal set {ek}∞k=1 is merely a relabeling of the exponentials
{einx}∞n=−∞.

Adapting the notation used in Fourier series, we write f ∼ ∑∞
k=1 akek,

where aj = (f, ej) for all j.

In the next theorem, we provide four equivalent characterizations that
{ek} is an orthonormal basis for H.

Theorem 2.3 The following properties of an orthonormal set {ek}∞k=1

are equivalent.

(i) Finite linear combinations of elements in {ek} are dense in H.

(ii) If f ∈ H and (f, ej) = 0 for all j, then f = 0.

(iii) If f ∈ H, and SN (f) =
∑N

k=1 akek, where ak = (f, ek), then SN (f) →
f as N →∞ in the norm.

(iv) If ak = (f, ek), then ‖f‖2 =
∑∞

k=1 |ak|2.

Proof. We prove that each property implies the next, with the last
one implying the first.

We begin by assuming (i). Given f ∈ H with (f, ej) = 0 for all j, we
wish to prove that f = 0. By assumption, there exists a sequence {gn}
of elements in H that are finite linear combinations of elements in {ek},
and such that ‖f − gn‖ tends to 0 as n goes to infinity. Since (f, ej) = 0
for all j, we must have (f, gn) = 0 for all n; therefore an application of
the Cauchy-Schwarz inequality gives

‖f‖2 = (f, f) = (f, f − gn) ≤ ‖f‖ ‖f − gn‖ for all n.

Letting n →∞ proves that ‖f‖2 = 0; hence f = 0, and (i) implies (ii).

Now suppose that (ii) is verified. For f ∈ H we define

SN (f) =
N∑

k=1

akek, where ak = (f, ek),
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and prove first that SN (f) converges to some element g ∈ H. Indeed,
one notices that the definition of ak implies (f − SN (f)) ⊥ SN (f), so
the Pythagorean theorem and Proposition 2.2 give

(2) ‖f‖2 = ‖f − SN (f)‖2 + ‖SN (f)‖2 = ‖f − SN (f)‖2 +
N∑

k=1

|ak|2.

Hence ‖f‖2 ≥ ∑N
k=1 |ak|2, and letting N tend to infinity we obtain Bessel’s

inequality
∞∑

k=1

|ak|2 ≤ ‖f‖2,

which implies that the series
∑∞

k=1 |ak|2 converges. Therefore, {SN (f)}∞N=1

forms a Cauchy sequence in H since

‖SN (f)− SM (f)‖2 =
N∑

k=M+1

|ak|2 whenever N > M .

Since H is complete, there exists g ∈ H such that SN (f) → g as N tends
to infinity.

Fix j, and note that for all sufficiently large N , (f − SN (f), ej) =
aj − aj = 0. Since SN (f) tends to g, we conclude that

(f − g, ej) = 0 for all j.

Hence f = g by assumption (ii), and we have proved that f =
∑∞

k=1 akek.
Now assume that (iii) holds. Observe from (2) that we immediately

get in the limit as N goes to infinity

‖f‖2 =
∞∑

k=1

|ak|2.

Finally, if (iv) holds, then again from (2) we see that ‖f − SN (f)‖
converges to 0. Since each SN (f) is a finite linear combination of elements
in {ek}, we have completed the circle of implications, and the theorem
is proved.

In particular, a closer look at the proof shows that Bessel’s inequality
holds for any orthonormal family {ek}. In contrast, the identity

‖f‖2 =
∞∑

k=1

|ak|2, where ak = (f, ek),
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which is called Parseval’s identity, holds if and only if {ek}∞k=1 is also
an orthonormal basis.

Now we turn our attention to the existence of a basis.

Theorem 2.4 Any Hilbert space has an orthonormal basis.

The first step in the proof of this fact is to recall that (by definition)
a Hilbert space H is separable. Hence, we may choose a countable col-
lection of elements F = {hk} in H so that finite linear combinations of
elements in F are dense in H.

We start by recalling a definition already used in the case of finite-
dimensional vector spaces. Finitely many elements g1, . . . , gN are said to
be linearly independent if whenever

a1g1 + · · ·+ aNgN = 0 for some complex numbers ai,

then a1 = a2 = · · · = aN = 0. In other words, no element gj is a lin-
ear combination of the others. In particular, we note that none of the
gj can be 0. We say that a countable family of elements is linearly
independent if all finite subsets of this family are linearly independent.

If we next successively disregard the elements hk that are linearly
dependent on the previous elements h1, h2, . . . , hk−1, then the result-
ing collection h1 = f1, f2, . . . , fk, . . . consists of linearly independent ele-
ments, whose finite linear combinations are the same as those given by
h1, h2, . . . , hk, . . ., and hence these linear combinations are also dense in
H.

The proof of the theorem now follows from an application of a familiar
construction called the Gram-Schmidt process. Given a finite family
of elements {f1, . . . , fk} we call the span of this family the set of all
elements which are finite linear combinations of the elements {f1, . . . , fk}.
We denote the span of {f1, . . . , fk} by Span({f1, . . . , fk}).

We now construct a sequence of orthonormal vectors e1, e2, . . . such
that Span({e1, . . . , en}) = Span({f1, . . . , fn}) for all n ≥ 1. We do this
by induction.

By the linear independence hypothesis, f1 6= 0, so we may take e1 =
f1/‖f1‖. Next, assume that orthonormal vectors e1, . . . , ek have been
found such that Span({e1, . . . , ek}) = Span({f1, . . . , fk}) for a given k.
We then try e′k+1 as fk+1 +

∑k
j=1 ajej . To have (e′k+1, ej) = 0 requires

that aj = −(fk+1, ej), and this choice of aj for 1 ≤ j ≤ k assures that
e′k+1 is orthogonal to e1, . . . , ek. Moreover our linear independence hy-
pothesis assures that e′k+1 6= 0; hence we need only “renormalize” and
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take ek+1 = e′k+1/‖e′k+1‖ to complete the inductive step. With this we
have found an orthonormal basis for H

Note that we have implicitly assumed that the number of linearly in-
dependent elements f1, f2, . . . is infinite. In the case where there are only
N linearly independent vectors f1, . . . , fN , then e1, . . . , eN constructed
in the same way also provide an orthonormal basis for H. These two
cases are differentiated in the following definition. If H is a Hilbert space
with an orthonormal basis consisting of finitely many elements, then we
say that H is finite-dimensional. Otherwise H is said to be infinite-
dimensional.

2.2 Unitary mappings

A correspondence between two Hilbert spaces that preserves their struc-
ture is a unitary transformation. More precisely, suppose we are given
two Hilbert spaces H and H′ with respective inner products (·, ·)H and
(·, ·)H′ , and the corresponding norms ‖ · ‖H and ‖ · ‖H′ . A mapping
U : H → H′ between these space is called unitary if:

(i) U is linear, that is, U(αf + βg) = αU(f) + βU(g).

(ii) U is a bijection.

(iii) ‖Uf‖H′ = ‖f‖H for all f ∈ H.

Some observations are in order. First, since U is bijective it must
have an inverse U−1 : H′ → H that is also unitary. Part (iii) above also
implies that if U is unitary, then

(Uf, Ug)H′ = (f, g)H for all f, g ∈ H.

To see this, it suffices to “polarize,” that is, to note that for any vector
space (say over C) with inner product (·, ·) and norm ‖ · ‖, we have

(F, G) =
1
4

[
‖F + G‖2 − ‖F −G‖2 + i

(
‖F

i
+ G‖2 − ‖F

i
−G‖2

)]

whenever F and G are elements of the space.

The above leads us to say that the two Hilbert spaces H and H′ are
unitarily equivalent or unitarily isomorphic if there exists a unitary
mapping U : H → H′. Clearly, unitary isomorphism of Hilbert spaces is
an equivalence relation.

With this definition we are now in a position to give precise meaning
to the statement we made earlier that all infinite-dimensional Hilbert
spaces are the same and in that sense `2(Z) in disguise.
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Corollary 2.5 Any two infinite-dimensional Hilbert spaces are unitarily
equivalent.

Proof. If H and H′ are two infinite-dimensional Hilbert spaces, we
may select for each an orthonormal basis, say

{e1, e2, . . .} ⊂ H and {e′1, e′2, . . .} ⊂ H′.

Then, consider the mapping defined as follows: if f =
∑∞

k=1 akek, then

U(f) = g, where g =
∞∑

k=1

ake′k.

Clearly, the mapping U is both linear and invertible. Moreover, by Par-
seval’s identity, we must have

‖Uf‖2H′ = ‖g‖2H′ =
∞∑

k=1

|ak|2 = ‖f‖2H,

and the corollary is proved.

Consequently, all infinite-dimensional Hilbert spaces are unitarily equiv-
alent to `2(N), and thus, by relabeling, to `2(Z). By similar reasoning
we also have the following:

Corollary 2.6 Any two finite-dimensional Hilbert spaces are unitarily
equivalent if and only if they have the same dimension.

Thus every finite-dimensional Hilbert space over C (or over R) is equiv-
alent with Cd (or Rd), for some d.

2.3 Pre-Hilbert spaces

Although Hilbert spaces arise naturally, one often starts with a pre-
Hilbert space instead, that is, a space H0 that satisfies all the defining
properties of a Hilbert space except (v); in other wordsH0 is not assumed
to be complete. A prime example arose implicitly early in the study of
Fourier series with the space H0 = R of Riemann integrable functions
on [−π, π] with the usual inner product; we return to this below. Other
examples appear in the next chapter in the study of the solutions of
partial differential equations.

Fortunately, every pre-Hilbert space H0 can be completed.
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Proposition 2.7 Suppose we are given a pre-Hilbert space H0 with in-
ner product (·, ·)0. Then we can find a Hilbert space H with inner product
(·, ·) such that

(i) H0 ⊂ H.

(ii) (f, g)0 = (f, g) whenever f, g ∈ H0.

(iii) H0 is dense in H.

A Hilbert space satisfying properties like H in the above proposition is
called a completion of H0. We shall only sketch the construction of
H, since it follows closely Cantor’s familiar method of obtaining the real
numbers as the completion of the rationals in terms of Cauchy sequences
of rationals.

Indeed, consider the collection of all Cauchy sequences {fn} with fn ∈
H0, 1 ≤ n < ∞. One defines an equivalence relation in this collection
by saying that {fn} is equivalent to {f ′n} if fn − f ′n converges to 0 as
n →∞. The collection of equivalence classes is then taken to be H. One
then easily verifies that H inherits the structure of a vector space, with
an inner product (f, g) defined as limn→∞(fn, gn), where {fn} and {gn}
are Cauchy sequences in H0, representing, respectively, the elements f
and g in H. Next, if f ∈ H0 we take the sequence {fn}, with fn = f for
all n, to represent f as an element of H, giving H0 ⊂ H. To see that
H is complete, let {F k}∞k=1 be a Cauchy sequence in H, with each F k

represented by {fk
n}∞n=1, fk

n ∈ H0. If we define F ∈ H as represented by
the sequence {fn} with fn = fn

N(n), where N(n) is so that |fn
N(n) − fn

j | ≤
1/n for j ≥ N(n), then we note that F k → F in H.

One can also observe that the completion H of H0 is unique up to
isomorphism. (See Exercise 14.)

3 Fourier series and Fatou’s theorem

We have already seen an interesting relation between Hilbert spaces and
some elementary facts about Fourier series. Here we want to pursue this
idea and also connect it with complex analysis.

When considering Fourier series, it is natural to begin by turning to
the broader class of all integrable functions on [−π, π]. Indeed, note that
L2([−π, π]) ⊂ L1([−π, π]), by the Cauchy-Schwarz inequality, since the
interval [−π, π] has finite measure. Thus, if f ∈ L1([−π, π]) and n ∈ Z,
we define the nth Fourier coefficient of f by

an =
1
2π

∫ π

−π

f(x)e−inx dx.
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The Fourier series of f is then formally
∑∞

n=−∞ aneinx, and we write

f(x) ∼
∞∑

n=−∞
aneinx

to indicate that the sum on the right is the Fourier series of the func-
tion on the left. The theory developed thus far provides the natural
generalization of some earlier results obtained in Book I.

Theorem 3.1 Suppose f is integrable on [−π, π].

(i) If an = 0 for all n, then f(x) = 0 for a.e. x.

(ii)
∑∞

n=−∞ anr|n|einx tends to f(x) for a.e. x, as r → 1, r < 1.

The second conclusion is the almost everywhere “Abel summability” to
f of its Fourier series. Note that since |an| ≤ 1

2π

∫ π

−π
|f(x)| dx, the series∑

anr|n|einx converges absolutely and uniformly for each r, 0 ≤ r < 1.

Proof. The first conclusion is an immediate consequence of the second.
To prove the latter we recall the identity

∞∑
n=−∞

r|n|einy = Pr(y) =
1− r2

1− 2r cos y + r2

for the Poisson kernel; see Book I, Chapter 2. Starting with our given
f ∈ L1([−π, π]) we extend it as a function on R by making it periodic of
period 2π.3 We then claim that for every x

(3)
∞∑

n=−∞
anr|n|einx =

1
2π

∫ π

−π

f(x− y)Pr(y) dy.

Indeed, by the dominated convergence theorem the right-hand side equals

∑
r|n|

1
2π

∫ π

−π

f(x− y)einy dy.

Moreover, for each x and n

∫ π

−π

f(x− y)einy dy =
∫ π+x

−π+x

f(y)ein(x−y) dy

= einx

∫ π

−π

f(y)e−iny dy = einx2πan.

3Note that we may without loss of generality assume that f(π) = f(−π) so as to make
the periodic extension unambiguous.
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The first equality follows by translation invariance (see Section 3, Chap-
ter 2), and the second since

∫ π

−π
F (y) dy =

∫
I
F (y) dy whenever F is peri-

odic of period 2π and I is an interval of length 2π (Exercise 3, Chapter 2).
With these observations, the identity (3) is established. We can now in-
voke the facts about approximations to the identity (Theorem 2.1 and
Example 4, Chapter 3) to conclude that the left-hand side of (3) tends to
f(x) at every point of the Lebesgue set of f , hence almost everywhere.
(To be correct, the hypotheses of the theorem require that f be integrable
on all of R. We can achieve this for our periodic function by setting f
equal to zero outside [−2π, 2π], and then (3) still holds for this modified
f , whenever x ∈ [−π, π].)

We return to the more restrictive setting of L2. We express the essen-
tial conclusions of Theorem 2.3 in the context of Fourier series. With
f ∈ L2([−π, π]), we write as before an = 1

2π

∫ π

−π
f(x)e−inx dx.

Theorem 3.2 Suppose f ∈ L2([−π, π]). Then:

(i) We have Parseval’s relation

∞∑
n=−∞

|an|2 =
1
2π

∫ π

−π

|f(x)|2 dx.

(ii) The mapping f 7→ {an} is a unitary correspondence between
L2([−π, π]) and `2(Z).

(iii) The Fourier series of f converges to f in the L2-norm, that is,

1
2π

∫ π

−π

|f(x)− SN (f)(x)|2 dx → 0 as N →∞,

where SN (f) =
∑
|n|≤N aneinx.

To apply the previous results, we let H = L2([−π, π]) with inner prod-
uct (f, g) = 1

2π

∫ π

−π
f(x)g(x) dx, and take the orthonormal set {ek}∞k=1

to be the exponentials {einx}∞n=−∞, with k = 1 when n = 0, k = 2n for
n > 0, and k = 2|n| − 1 for n < 0.

By the previous result, assertion (ii) of Theorem 2.3 holds and thus
all the other conclusions hold. We therefore have Parseval’s relation,
and from (iv) we conclude that ‖f − SN (f)‖2 =

∑
|n|>N |an|2 → 0 as

N →∞. Similarly, if {an} ∈ `2(Z) is given, then ‖SN (f)− SM (f)‖2 →
0, as N, M →∞. Hence the completeness of L2 guarantees that there is
an f ∈ L2 such that ‖f − SN (f)‖ → 0, and one verifies directly that f
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has {an} as its Fourier coefficients. Thus we deduce that the mapping
f 7→ {an} is onto and hence unitary. This is a key conclusion that holds
in the setting on L2 and was not valid in an earlier context of Riemann
integrable functions. In fact the space R of such functions on [−π, π] is
not complete in the norm, containing as it does the continuous functions,
but R is itself restricted to bounded functions.

3.1 Fatou’s theorem

Fatou’s theorem is a remarkable result in complex analysis. Its proof
combines elements of Hilbert spaces, Fourier series, and deeper ideas of
differentiation theory, and yet none of these notions appear in its state-
ment. The question that Fatou’s theorem answers may be put simply as
follows.

Suppose F (z) is holomorphic in the unit disc D = {z ∈ C :
|z| < 1}. What are conditions on F that guarantee that F (z)
will converge, in an appropriate sense, to boundary values
F (eiθ) on the unit circle?

In general a holomorphic function in the unit disc can behave quite
erratically near the boundary. It turns out, however, that imposing a
simple boundedness condition is enough to obtain a strong conclusion.

If F is a function defined in the unit disc D, we say that F has a radial
limit at the point −π ≤ θ ≤ π on the circle, if the limit

lim
r → 1
r < 1

F (reiθ)

exists.

Theorem 3.3 A bounded holomorphic function F (reiθ) on the unit disc
has radial limits at almost every θ.

Proof. We know that F (z) has a power series expansion
∑∞

n=0 anzn in
D that converges absolutely and uniformly whenever z = reiθ and r < 1.
In fact, for r < 1 the series

∑∞
n=0 anrneinθ is the Fourier series of the

function F (reiθ), that is,

anrn =
1
2π

∫ π

−π

F (reiθ)e−inθ dθ when n ≥ 0,

and the integral vanishes when n < 0. (See also Chapter 3, Section 7 in
Book II).
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We pick M so that |F (z)| ≤ M , for all z ∈ D. By Parseval’s identity

∞∑
n=0

|an|2r2n =
1
2π

∫ π

−π

|F (reiθ)|2dθ for each 0 ≤ r < 1.

Letting r → 1 one sees that
∑ |an|2 converges (and is ≤ M2). We now let

F (eiθ) be the L2-function whose Fourier coefficients are an when n ≥ 0,
and 0 when n < 0. Hence by conclusion (ii) in Theorem 3.1

∞∑
n=0

anrneinθ → F (eiθ), for a.e θ,

concluding the proof of the theorem.

If we examine the argument given above we see that the same conclu-
sion holds for a larger class of functions. In this connection, we define
the Hardy space H2(D) to consist of all holomorphic functions F on
the unit disc D that satisfy

sup
0≤r<1

1
2π

∫ π

−π

|F (reiθ)|2 dθ < ∞.

We also define the “norm” for functions F in this class, ‖F‖H2(D), to be
the square root of the above quantity.

One notes that if F is bounded, then F ∈ H2(D), and moreover the
conclusion of the existence of radial limits almost everywhere holds for
any F ∈ H2(D), by the same argument given for the bounded case.4 Fi-
nally, one notes that F ∈ H2(D) if and only if F (z) =

∑∞
n=0 anzn with∑∞

n=0 |an|2 < ∞; moreover,
∑∞

n=0 |an|2 = ‖F‖2H2(D). This states in par-
ticular that H2(D) is in fact a Hilbert space that can be viewed as the
“subspace” `2(Z+) of `2(Z), consisting of all {an} ∈ `2(Z), with an = 0
when n < 0.

Some general considerations of subspaces and their concomitant or-
thogonal projections will be taken up next.

4 Closed subspaces and orthogonal projections

A linear subspace S (or simply subspace) of H is a subset of H that
satisfies αf + βg ∈ S whenever f, g ∈ S and α, β are scalars. In other
words, S is also a vector space. For example in R3, lines passing through

4An even more general statement is given in Problem 5∗.
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the origin and planes passing through the origin are the one-dimensional
and two-dimensional subspaces, respectively.

The subspace S is closed if whenever {fn} ⊂ S converges to some
f ∈ H, then f also belongs to S. In the case of finite-dimensional Hilbert
spaces, every subspace is closed. This is, however, not true in the gen-
eral case of infinite-dimensional Hilbert spaces. For instance, as we
have already indicated, the subspace of Riemann integrable functions
in L2([−π, π]) is not closed, nor is the subspace obtained by fixing a ba-
sis and taking all vectors that are finite linear combinations of these basis
elements. It is useful to note that every closed subspace S of H is itself a
Hilbert space, with the inner product on S that which is inherited from
H. (For the separability of S, see Exercise 11.)

Next, we show that a closed subspace enjoys an important character-
istic property of Euclidean geometry.

Lemma 4.1 Suppose S is a closed subspace of H and f ∈ H. Then:

(i) There exists a (unique) element g0 ∈ S which is closest to f , in the
sense that

‖f − g0‖ = inf
g∈S

‖f − g‖.

(ii) The element f − g0 is perpendicular to S, that is,

(f − g0, g) = 0 for all g ∈ S.

The situation in the lemma can be visualized as in Figure 1.

f

g0

S

Figure 1. Nearest element to f in S
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Proof. If f ∈ S, then we choose f = g0, and there is nothing left
to prove. Otherwise, we let d = infg∈S ‖f − g‖, and note that we must
have d > 0 since f /∈ S and S is closed. Consider a sequence {gn}∞n=1 in
S such that

‖f − gn‖ → d as n →∞.

We claim that {gn} is a Cauchy sequence whose limit will be the desired
element g0. In fact, it would suffice to show that a subsequence of {gn}
converges, and this is immediate in the finite-dimensional case because
a closed ball is compact. However, in general this compactness fails, as
we shall see in Section 6, and so a more intricate argument is needed at
this point.

To prove our claim, we use the parallelogram law, which states that
in a Hilbert space H

(4) ‖A + B‖2 + ‖A−B‖2 = 2
[‖A‖2 + ‖B‖2] for all A,B ∈ H.

The simple verification of this equality, which consists of writing each
norm in terms of the inner product, is left to the reader. Putting A =
f − gn and B = f − gm in the parallelogram law, we find

‖2f − (gn + gm)‖2 + ‖gm − gn‖2 = 2
[‖f − gn‖2 + ‖f − gm‖2

]
.

However S is a subspace, so the quantity 1
2(gn + gm) belongs to S, hence

‖2f − (gn + gm)‖ = 2‖f − 1
2
(gn + gm)‖ ≥ 2d.

Therefore

‖gm − gn‖2 = 2
[‖f − gn‖2 + ‖f − gm‖2

]− ‖2f − (gn + gm)‖2
≤ 2

[‖f − gn‖2 + ‖f − gm‖2
]− 4d2.

By construction, we know that ‖f − gn‖ → d and ‖f − gm‖ → d as n,m →
∞, so the above inequality implies that {gn} is a Cauchy sequence. Since
H is complete and S closed, the sequence {gn} must have a limit g0 in
S, and then it satisfies d = ‖f − g0‖.

We prove that if g ∈ S, then g ⊥ (f − g0). For each ε (positive or neg-
ative), consider the perturbation of g0 defined by g0 − εg. This element
belongs to S, hence

‖f − (g0 − εg)‖2 ≥ ‖f − g0‖2.
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Since ‖f − (g0 − εg)‖2 = ‖f − g0‖2 + ε2‖g‖2 + 2ε Re(f − g0, g), we find
that

(5) 2ε Re(f − g0, g) + ε2‖g‖2 ≥ 0.

If Re(f − g0, g) < 0, then taking ε small and positive contradicts (5).
If Re(f − g0, g) > 0, a contradiction also follows by taking ε small and
negative. Thus Re(f − g0, g) = 0. By considering the perturbation g0 −
iεg, a similar argument gives Im(f − g0, g) = 0, and hence (f − g0, g) =
0.

Finally, the uniqueness of g0 follows from the above observation about
orthogonality. Suppose g̃0 is another point in S that minimizes the
distance to f . By taking g = g0 − g̃0 in our last argument we find
(f − g0) ⊥ (g0 − g̃0), and the Pythagorean theorem gives

‖f − g̃0‖2 = ‖f − g0‖2 + ‖g0 − g̃0‖2.

Since by assumption ‖f − g̃0‖2 = ‖f − g0‖2, we conclude that ‖g0 − g̃0‖ =
0, as desired.

Using the lemma, we may now introduce a useful concept that is an-
other expression of the notion of orthogonality. If S is a subspace of a
Hilbert space H, we define the orthogonal complement of S by

S⊥ = {f ∈ H : (f, g) = 0 for all g ∈ S}.

Clearly, S⊥ is also a subspace of H, and moreover S ∩ S⊥ = {0}. To see
this, note that if f ∈ S ∩ S⊥, then f must be orthogonal to itself; thus
0 = (f, f) = ‖f‖, and therefore f = 0. Moreover, S⊥ is itself a closed
subspace. Indeed, if fn → f , then (fn, g) → (f, g) for every g, by the
Cauchy-Schwarz inequality. Hence if (fn, g) = 0 for all g ∈ S and all n,
then (f, g) = 0 for all those g.

Proposition 4.2 If S is a closed subspace of a Hilbert space H, then

H = S ⊕ S⊥.

The notation in the proposition means that every f ∈ H can be written
uniquely as f = g + h, where g ∈ S and h ∈ S⊥; we say that H is the
direct sum of S and S⊥. This is equivalent to saying that any f in H
is the sum of two elements, one in S, the other in S⊥, and that S ∩ S⊥
contains only 0.

The proof of the proposition relies on the previous lemma giving the
closest element of f in S. In fact, for any f ∈ H, we choose g0 as in the
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lemma and write

f = g0 + (f − g0).

By construction g0 ∈ S, and the lemma implies f − g0 ∈ S⊥, and this
shows that f is the sum of an element in S and one in S⊥. To prove that
this decomposition is unique, suppose that

f = g + h = g̃ + h̃ where g, g̃ ∈ S and h, h̃ ∈ S⊥.

Then, we must have g − g̃ = h̃− h. Since the left-hand side belongs to
S while the right-hand side belongs to S⊥ the fact that S ∩ S⊥ = {0}
implies g − g̃ = 0 and h̃− h = 0. Therefore g = g̃ and h = h̃ and the
uniqueness is established.

With the decomposition H = S ⊕ S⊥ one has the natural projection
onto S defined by

PS(f) = g, where f = g + h and g ∈ S, h ∈ S⊥.

The mapping PS is called the orthogonal projection onto S and sat-
isfies the following simple properties:

(i) f 7→ PS(f) is linear,

(ii) PS(f) = f whenever f ∈ S,

(iii) PS(f) = 0 whenever f ∈ S⊥,

(iv) ‖PS(f)‖ ≤ ‖f‖ for all f ∈ H.

Property (i) means that PS(αf1 + βf2) = αPS(f1) + βPS(f2), whenever
f1, f2 ∈ H and α and β are scalars.

It will be useful to observe the following. Suppose {ek} is a (finite
or infinite) collection of orthonormal vectors in H. Then the orthogonal
projection P in the closure of the subspace spanned by {ek} is given by
P (f) =

∑
k(f, ek)ek. In case the collection is infinite, the sum converges

in the norm of H.
We illustrate this with two examples that arise in Fourier analysis.

Example 1. On L2([−π, π]), recall that if f(θ) ∼ ∑∞
n=−∞ aneinθ then

the partial sums of the Fourier series are

SN (f)(θ) =
N∑

n=−N

aneinθ.
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Therefore, the partial sum operator SN consists of the projection onto
the closed subspace spanned by {e−N , . . . , eN}.

The sum SN can be realized as a convolution

SN (f)(θ) =
1
2π

∫ π

−π

DN (θ − ϕ)f(ϕ) dϕ,

where DN (θ) = sin((N + 1/2)θ)/ sin(θ/2) is the Dirichlet kernel.

Example 2. Once again, consider L2([−π, π]) and let S denote the
subspace that consists of all F ∈ L2([−π, π]) with

F (θ) ∼
∞∑

n=0

aneinθ.

In other words, S is the space of square integrable functions whose
Fourier coefficients an vanish for n < 0. From the proof of Fatou’s theo-
rem, this implies that S can be identified with the Hardy space H2(D),
where D is the unit disc, and so is a closed subspace unitarily isomorphic
to `2(Z+). Therefore, using this identification, if P denotes the orthogo-
nal projection from L2([−π, π]) to S, we may also write P (f)(z) for the
element corresponding to H2(D), that is,

P (f)(z) =
∞∑

n=0

anzn.

Given f ∈ L2([−π, π]), we define the Cauchy integral of f by

C(f)(z) =
1

2πi

∫

γ

f(ζ)
ζ − z

dζ,

where γ denotes the unit circle and z belongs to the unit disc. Then we
have the identity

P (f)(z) = C(f)(z), for all z ∈ D.

Indeed, since f ∈ L2 it follows by the Cauchy-Schwarz inequality that
f ∈ L1([−π, π]), and therefore we may interchange the sum and integral
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in the following calculation (recall |z| < 1):

P (f)(z) =
∞∑

n=0

anzn =
∞∑

n=0

(
1
2π

∫ π

−π

f(eiθ)e−inθdθ

)
zn

=
1
2π

∫ π

−π

f(eiθ)
∞∑

n=0

(e−iθz)ndθ

=
1
2π

∫ π

−π

f(eiθ)
1− e−iθz

dθ

=
1

2πi

∫ π

−π

f(eiθ)
eiθ − z

ieiθdθ

= C(f)(z).

5 Linear transformations

The focus of analysis in Hilbert spaces is largely the study of their lin-
ear transformations. We have already encountered two classes of such
transformations, the unitary mappings and the orthogonal projections.
There are two other important classes we shall deal with in this chapter
in some detail: the “linear functionals” and the “compact operators,”
and in particular those that are symmetric.

Suppose H1 and H2 are two Hilbert spaces. A mapping T : H1 → H2

is a linear transformation (also called linear operator or operator)
if

T (af + bg) = aT (f) + bT (g) for all scalars a, b and f, g ∈ H1.

Clearly, linear operators satisfy T (0) = 0.
We shall say that a linear operator T : H1 → H2 is bounded if there

exists M > 0 so that

(6) ‖T (f)‖H2 ≤ M‖f‖H1 .

The norm of T is denoted by ‖T‖H1→H2 or simply ‖T‖ and defined by

‖T‖ = inf M,

where the infimum is taken over all M so that (6) holds. A trivial example
is given by the identity operator I, with I(f) = f . It is of course a
unitary operator and a projection, with ‖I‖ = 1.
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In what follows we shall generally drop the subscripts attached to the
norms of elements of a Hilbert space, when this causes no confusion.

Lemma 5.1 ‖T‖ = sup{|(Tf, g)| : ‖f‖ ≤ 1, ‖g‖ ≤ 1}, where of course
f ∈ H1 and g ∈ H2.

Proof. If ‖T‖ ≤ M , the Cauchy-Schwarz inequality gives

|(Tf, g)| ≤ M whenever ‖f‖ ≤ 1 and ‖g‖ ≤ 1;

thus sup{|(Tf, g)| : ‖f‖ ≤ 1, ‖g‖ ≤ 1} ≤ ‖T‖.
Conversely, if sup{|(Tf, g)| : ‖f‖ ≤ 1, ‖g‖ ≤ 1} ≤ M , we claim that

‖Tf‖ ≤ M‖f‖ for all f . If f or Tf is zero, there is nothing to prove.
Otherwise, f ′ = f/‖f‖ and g′ = Tf/‖Tf‖ have norm 1, so by assump-
tion

|(Tf ′, g′)| ≤ M.

But since |(Tf ′, g′)| = ‖Tf‖/‖f‖ this gives ‖Tf‖ ≤ M‖f‖, and the
lemma is proved.

A linear transformation T is continuous if T (fn) → T (f) whenever
fn → f . Clearly, linearity implies that T is continuous on all of H1 if
and only if it is continuous at the origin. In fact, the conditions of being
bounded or continuous are equivalent.

Proposition 5.2 A linear operator T : H1 → H2 is bounded if and only
if it is continuous.

Proof. If T is bounded, then ‖T (f)− T (fn)‖H2 ≤ M‖f − fn‖H1 ,
hence T is continuous. Conversely, suppose that T is continuous but
not bounded. Then for each n there exists fn 6= 0 such that ‖T (fn)‖ ≥
n‖fn‖. The element gn = fn/(n‖fn‖) has norm 1/n, hence gn → 0.
Since T is continuous at 0, we must have T (gn) → 0, which contradicts
the fact that ‖T (gn)‖ ≥ 1. This proves the proposition.

In the rest of this chapter we shall assume that all linear operators are
bounded, hence continuous. It is noteworthy to recall that any linear
operator between finite-dimensional Hilbert spaces is necessarily contin-
uous.

5.1 Linear functionals and the Riesz representation theorem

A linear functional ` is a linear transformation from a Hilbert space
H to the underlying field of scalars, which we may assume to be the
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complex numbers,

` : H → C.

Of course, we view C as a Hilbert space equipped with its standard norm,
the absolute value.

A natural example of a linear functional is provided by the inner prod-
uct on H. Indeed, for fixed g ∈ H, the map

`(f) = (f, g)

is linear, and also bounded by the Cauchy-Schwarz inequality. Indeed,

|(f, g)| ≤ M‖f‖, where M = ‖g‖.

Moreover, `(g) = M‖g‖ so we have ‖`‖ = ‖g‖. The remarkable fact is
that this example is exhaustive, in the sense that every continuous linear
functional on a Hilbert space arises as an inner product. This is the so-
called Riesz representation theorem.

Theorem 5.3 Let ` be a continuous linear functional on a Hilbert space
H. Then, there exists a unique g ∈ H such that

`(f) = (f, g) for all f ∈ H.

Moreover, ‖`‖ = ‖g‖.

Proof. Consider the subspace of H defined by

S = {f ∈ H : `(f) = 0}.

Since ` is continuous the subspace S, which is called the null-space of `,
is closed. If S = H, then ` = 0 and we take g = 0. Otherwise S⊥ is non-
trivial and we may pick any h ∈ S⊥ with ‖h‖ = 1. With this choice of h
we determine g by setting g = `(h)h. Thus if we let u = `(f)h− `(h)f ,
then u ∈ S, and therefore (u, h) = 0. Hence

0 = (`(f)h− `(h)f, h) = `(f)(h, h)− (f, `(h)h).

Since (h, h) = 1, we find that `(f) = (f, g) as desired.

At this stage we record the following remark for later use. Let H0

be a pre-Hilbert space whose completion is H. Suppose `0 is a linear
functional on H0 which is bounded, that is, |`0(f)| ≤ M‖f‖ for all f ∈
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H0. Then `0 has an extension ` to a bounded linear functional on H,
with |`(f)| ≤ M‖f‖ for all f ∈ H. This extension is also unique. To see
this, one merely notes that {`0(fn)} is a Cauchy sequence whenever the
vectors {fn} belong to H0, and fn → f in H, as n →∞. Thus we may
define `(f) as limn→∞ `0(fn). The verification of the asserted properties
of ` is then immediate. (This result is a special case of the extension
Lemma 1.3 in the next chapter.)

5.2 Adjoints

The first application of the Riesz representation theorem is to determine
the existence of the “adjoint” of a linear transformation.

Proposition 5.4 Let T : H → H be a bounded linear transformation.
There exists a unique bounded linear transformation T ∗ on H so that:

(i) (Tf, g) = (f, T ∗g),

(ii) ‖T‖ = ‖T ∗‖,
(iii) (T ∗)∗ = T .

The linear operator T ∗ : H → H satisfying the above conditions is called
the adjoint of T .

To prove the existence of an operator satisfying (i) above, we observe
that for each fixed g ∈ H, the linear functional ` = `g, defined by

`(f) = (Tf, g),

is bounded. Indeed, since T is bounded one has ‖Tf‖ ≤ M‖f‖; hence
the Cauchy-Schwarz inequality implies that

|`(f)| ≤ ‖Tf‖ ‖g‖ ≤ B‖f‖,
where B = M‖g‖. Consequently, the Riesz representation theorem guar-
antees the existence of a unique h ∈ H, h = hg, such that

`(f) = (f, h).

Then we define T ∗g = h, and note that the association T ∗ : g 7→ h is
linear and satisfies (i).

The fact that ‖T‖ = ‖T ∗‖ follows at once from (i) and Lemma 5.1:

‖T‖ = sup{|(Tf, g)| : ‖f‖ ≤ 1, ‖g‖ ≤ 1}
= sup{|(f, T ∗g)| : ‖f‖ ≤ 1, ‖g‖ ≤ 1}
= ‖T ∗‖.
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To prove (iii), note that (Tf, g) = (f, T ∗g) for all f and g if and only
if (T ∗f, g) = (f, Tg) for all f and g, as one can see by taking complex
conjugates and reversing the roles of f and g.

We record here a few additional remarks.

(a) In the special case when T = T ∗ (we say that T is symmetric), then

(7) ‖T‖ = sup{|(Tf, f)| : ‖f‖ = 1}.

This should be compared to Lemma 5.1, which holds for any linear oper-
ator. To establish (7), let M = sup{|(Tf, f)| : ‖f‖ = 1}. By Lemma 5.1
it is clear that M ≤ ‖T‖. Conversely, if f and g belong on H, then one
has the following “polarization” identity which is easy to verify

(Tf, g) =
1
4
[(T (f + g), f + g)− (T (f − g), f − g)

+ i (T (f + ig), f + ig)− i (T (f − ig), f − ig)].

For any h ∈ H, the quantity (Th, h) is real, because T = T ∗, hence
(Th, h) = (h, T ∗h) = (h, Th) = (Th, h). Consequently

Re(Tf, g) =
1
4

[(T (f + g), f + g)− (T (f − g), f − g)] .

Now |(Th, h)| ≤ M‖h‖2, so |Re(Tf, g)| ≤ M
4

[‖f + g‖2 + ‖f − g‖2], and
an application of the parallelogram law (4) then implies

|Re(Tf, g)| ≤ M

2
[‖f‖2 + ‖g‖2].

So if ‖f‖ ≤ 1 and ‖g‖ ≤ 1, then |Re(Tf, g)| ≤ M . In general, we may
replace g by eiθg in the last inequality to find that whenever ‖f‖ ≤ 1 and
‖g‖ ≤ 1, then |(Tf, g)| ≤ M , and invoking Lemma 5.1 once again gives
the result, ‖T‖ ≤ M .

(b) Let us note that if T and S are bounded linear transformations ofH to
itself, then so is their product TS, defined by (TS)(f) = T (S(f)). More-
over we have automatically (TS)∗ = S∗T ∗; in fact, (TSf, g) = (Sf, T ∗g) =
(f, S∗T ∗g).

(c) One can also exhibit a natural connection between linear transforma-
tions on a Hilbert space and their associated bilinear forms. Suppose first
that T is a bounded operator in H. Define the corresponding bilinear
form B by

(8) B(f, g) = (Tf, g).
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Note that B is linear in f and conjugate linear in g. Also by the Cauchy-
Schwarz inequality |B(f, g)| ≤ M‖f‖ ‖g‖, where M = ‖T‖. Conversely if
B is linear in f , conjugate linear in g and satisfies |B(f, g)| ≤ M‖f‖ ‖g‖,
there is a unique linear transformation so that (8) holds with M = ‖T‖.
This can be proved by the argument of Proposition 5.4; the details are
left to the reader.

5.3 Examples

Having presented the elementary facts about Hilbert spaces, we now
digress to describe briefly the background of some of the early develop-
ments of the theory. A motivating problem of considerable interest was
that of the study of the “eigenfunction expansion” of a differential oper-
ator L. A particular case, that of a Sturm-Liouville operator, arises on
an interval [a, b] of R with L defined by

L =
d2

dx2
− q(x),

where q is a given real-valued function. The question is then that of
expanding an “arbitrary” function in terms of the eigenfunctions ϕ, that
is those functions that satisfy L(ϕ) = µϕ for some µ ∈ R. The classi-
cal example of this is that of Fourier series, where L = d2/dx2 on the
interval [−π, π] with each exponential einx an eigenfunction of L with
eigenvalue µ = −n2.

When made precise in the “regular” case, the problem for L can be
resolved by considering an associated “integral operator” T defined on
L2([a, b]) by

T (f)(x) =
∫ b

a

K(x, y)f(y) dy,

with the property that for suitable f ,

LT (f) = f.

It turns out that a key feature that makes the study of T tractable is
a certain compactness it enjoys. We now pass to the definitions and
elaboration of some of these ideas, and begin by giving two relevant
illustrations of classes of operators on Hilbert spaces.

Infinite diagonal matrix

Suppose {ϕk}∞k=1 is an orthonormal basis of H. Then, a linear transfor-
mation T : H → H is said to be diagonalized with respect to the basis
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{ϕk} if

T (ϕk) = λkϕk, where λk ∈ C for all k.

In general, a non-zero element ϕ is called an eigenvector of T with
eigenvalue λ if Tϕ = λϕ. So the ϕk above are eigenvectors of T , and
the numbers λk are the corresponding eigenvalues.

So if

f ∼
∞∑

k=1

akϕk then Tf ∼
∞∑

k=1

akλkϕk.

The sequence {λk} is called the multiplier sequence corresponding to
T .

In this case, one can easily verify the following facts:

• ‖T‖ = supk |λk|.
• T ∗ corresponds to the sequence {λk}; hence T = T ∗ if and only if

the λk are real.

• T is unitary if and only if |λk| = 1 for all k.

• T is an orthogonal projection if and only if λk = 0 or 1 for all k.

As a particular example, consider H = L2([−π, π]), and assume that
every f ∈ L2([−π, π]) is extended to R by periodicity, so that f(x +
2π) = f(x) for all x ∈ R. Let ϕk(x) = eikx for k ∈ Z. For a fixed h ∈ R
the operator Uh defined by

Uh(f)(x) = f(x + h)

is unitary with λk = eikh. Hence

Uh(f) ∼
∞∑

k=−∞
akλkeikx if f ∼

∞∑

k=−∞
akeikx.

Integral operators, and in particular, Hilbert-Schmidt
operators

Let H = L2(Rd). If we can define an operator T : H → H by the formula

T (f)(x) =
∫

Rd

K(x, y)f(y) dy whenever f ∈ L2(Rd),
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we say that the operator T is an integral operator and K is its asso-
ciated kernel.

In fact, it was the problem of invertibility related to such operators,
and more precisely the question of solvability of the equation f − Tf = g
for given g, that initiated the study of Hilbert spaces. These equations
were then called “integral equations.”

In general a bounded linear transformation cannot be expressed as an
(absolutely convergent) integral operator. However, there is an inter-
esting class for which this is possible and which has a number of other
worthwhile properties: Hilbert-Schmidt operators, those with a ker-
nel K that belongs to L2(Rd × Rd).

Proposition 5.5 Let T be a Hilbert-Schmidt operator on L2(Rd) with
kernel K.

(i) If f ∈ L2(Rd), then for almost every x the function y 7→ K(x, y)f(y)
is integrable.

(ii) The operator T is bounded from L2(Rd) to itself, and

‖T‖ ≤ ‖K‖L2(Rd×Rd),

where ‖K‖L2(Rd×Rd) is the L2-norm of K on Rd × Rd = R2d.

(iii) The adjoint T ∗ has kernel K(y, x).

Proof. By Fubini’s theorem we know that for almost every x, the
function y 7→ |K(x, y)|2 is integrable. Then, part (i) follows directly from
an application of the Cauchy-Schwarz inequality.

For (ii), we make use again of the Cauchy-Schwarz inequality as follows
∣∣∣∣
∫

K(x, y)f(y) dy

∣∣∣∣ ≤
∫
|K(x, y)||f(y)| dy

≤
(∫

|K(x, y)|2 dy

)1/2 (∫
|f(y)|2 dy

)1/2

.

Therefore, squaring this and integrating in x yields

‖Tf‖2L2(Rd) ≤
∫ (∫

|K(x, y)|2dy

∫
|f(y)|2dy

)
dx

= ‖K‖2L2(Rd×Rd)‖f‖2L2(Rd).

Finally, part (iii) follows by writing out (Tf, g) in terms of a double
integral, and then interchanging the order of integration, as is permissible
by Fubini’s theorem.
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Hilbert-Schmidt operators can be defined analogously for the Hilbert
space L2(E), where E is a measurable subset of Rd. We leave it to the
reader to formulate an prove the analogue of Proposition 5.5 that holds
in this case.

Hilbert-Schmidt operators enjoy another important property: they are
compact. We will now discuss this feature in more detail.

6 Compact operators

We shall use the notion of sequential compactness in a Hilbert space H:
a set X ⊂ H is compact if for every sequence {fn} in X, there exists a
subsequence {fnk

} that converges in the norm to an element in X.

Let H denote a Hilbert space, and B the closed unit ball in H,

B = {f ∈ H : ‖f‖ ≤ 1}.

A well-known result in elementary real analysis says that in a finite-
dimensional Euclidean space, a closed and bounded set is compact. How-
ever, this does not carry over to the infinite-dimensional case. The fact
is that in this case the unit ball, while closed and bounded, is not com-
pact. To see this, consider the sequence {fn} = {en}, where the en are
orthonormal. By the Pythagorean theorem, ‖en − em‖2 = 2 if n 6= m, so
no subsequence of the {en} can converge.

In the infinite-dimensional case we say that a linear operator T : H →
H is compact if the closure of

T (B) = {g ∈ H : g = T (f) for some f ∈ B}

is a compact set. Equivalently, an operator T is compact if, whenever
{fk} is a bounded sequence in H, there exists a subsequence {fnk

} so
that Tfnk

converges. Note that a compact operator is automatically
bounded.

Note that by what has been said, a linear transformation is in general
not compact (take for instance the identity operator!). However, if T is
of finite rank, which means that its range is finite-dimensional, then
it is automatically compact. It turns out that dealing with compact
operators provides us with the closest analogy to the usual theorems of
(finite-dimensional) linear algebra. Some relevant analytic properties of
compact operators are given by the proposition below.

Proposition 6.1 Suppose T is a bounded linear operator on H.
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(i) If S is compact on H, then ST and TS are also compact.

(ii) If {Tn} is a family of compact linear operators with ‖Tn − T‖ → 0
as n tends to infinity, then T is compact.

(iii) Conversely, if T is compact, there is a sequence {Tn} of operators
of finite rank such that ‖Tn − T‖ → 0.

(iv) T is compact if and only if T ∗ is compact.

Proof. Part (i) is immediate. For part (ii) we use a diagonalization
argument. Suppose {fk} is a bounded sequence in H. Since T1 is com-
pact, we may extract a subsequence {f1,k}∞k=1 of {fk} such that T1(f1,k)
converges. From {f1,k} we may find a subsequence {f2,k}∞k=1 such that
T2(f2,k) converges, and so on. If we let gk = fk,k, then we claim {T (gk)}
is a Cauchy sequence. We have

‖T (gk)− T (g`)‖ ≤ ‖T (gk)− Tm(gk)‖+ ‖Tm(gk)− Tm(g`)‖+
+ ‖Tm(g`)− T (g`)‖.

Since ‖T − Tm‖ → 0 and {gk} is bounded, we can make the first and
last term each < ε/3 for some large m independent of k and `. With this
fixed m, we note that by construction ‖Tm(gk)− Tm(g`)‖ < ε/3 for all
large k and `. This proves our claim; hence {T (gk)} converges in H.

To prove (iii) let {ek}∞k=1 be a basis of H and let Qn be the orthogonal
projection on the subspace spanned by the ek with k > n. Then clearly
Qn(g) ∼ ∑

k>n akek whenever g ∼ ∑∞
k=1 akek, and ‖Qng‖2 is a decreas-

ing sequence that tends to 0 as n →∞ for any g ∈ H. We claim that
‖QnT‖ → 0 as n →∞. If not, there is a c > 0 so that ‖QnT‖ ≥ c, and
hence for each n we can find fn, with ‖fn‖ = 1 so that ‖QnTfn‖ ≥ c.
Now by compactness of T , choosing an appropriate subsequence {fnk

},
we have Tfnk

→ g for some g. But Qnk
(g) = Qnk

Tfnk
−Qnk

(Tfnk
− g),

and hence we conclude that ‖Qnk
(g)‖ ≥ c/2, for large k. This contradic-

tion shows that ‖QnT‖ → 0. So if Pn is the complementary projection
on the finite-dimensional space spanned by e1, . . . , en, I = Pn + Qn, then
‖QnT‖ → 0 means that ‖PnT − T‖ → 0. Since each PnT is of finite rank,
assertion (iii) is established.

Finally, if T is compact the fact that ‖PnT − T‖ → 0 implies ‖T ∗Pn −
T ∗‖ → 0, and clearly T ∗Pn is again of finite rank. Thus we need only
appeal to the second conclusion to prove the last.

We now state two further observations about compact operators.
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• If T can be diagonalized with respect to some basis {ϕk} of eigen-
vectors and corresponding eigenvalues {λk}, then T is compact if
and only if |λk| → 0. See Exercise 25.

• Every Hilbert-Schmidt operator is compact.

To prove the second point, recall that a Hilbert-Schmidt operator is
given on L2(Rd) by

T (f)(x) =
∫

Rd

K(x, y)f(y) dy, where K ∈ L2(Rd × Rd).

If {ϕk}∞k=1 denotes an orthonormal basis for L2(Rd), then the collection
{ϕk(x)ϕ`(y)}k,`≥1 is an orthonormal basis for L2(Rd × Rd); the proof of
this simple fact is outlined in Exercise 7. As a result

K(x, y) ∼
∞∑

k,`=1

ak`ϕk(x)ϕ`(y), with
∑

k,` |ak`|2 < ∞.

We define an operator

Tnf(x) =
∫

Rd

Kn(x, y)f(y)dy, where Kn(x, y) =
∑n

k,`=1 ak`ϕk(x)ϕ`(y).

Then, each Tn has finite-dimensional range, hence is compact. Moreover,

‖K −Kn‖2L2(Rd×Rd) =
∑

k ≥ n or ` ≥ n

|ak`|2 → 0 as n →∞.

By Proposition 5.5, ‖T − Tn‖ ≤ ‖K −Kn‖L2(Rd×Rd), so we can conclude
the proof that T is compact by appealing to Proposition 6.1.

The climax of our efforts regarding compact operators is the infinite-
dimensional version of the familiar diagonalization theorem in linear al-
gebra for symmetric matrices. Using a similar terminology, we say that
a bounded linear operator T is symmetric if T ∗ = T . (These operators
are also called “self-adjoint” or “Hermitian.”)

Theorem 6.2 (Spectral theorem) Suppose T is a compact symmet-
ric operator on a Hilbert space H. Then there exists an (orthonormal)
basis {ϕk}∞k=1 of H that consists of eigenvectors of T . Moreover, if

Tϕk = λkϕk,

then λk ∈ R and λk → 0 as k →∞.
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Conversely, every operator of the above form is compact and symmetric.
The collection {λk} is called the spectrum of T .

Lemma 6.3 Suppose T is a bounded symmetric linear operator on a
Hilbert space H.

(i) If λ is an eigenvalue of T , then λ is real.

(ii) If f1 and f2 are eigenvectors corresponding to two distinct eigen-
values, then f1 and f2 are orthogonal.

Proof. To prove (i), we first choose a non-zero eigenvector f such
that T (f) = λf . Since T is symmetric (that is, T = T ∗), we find that

λ(f, f) = (Tf, f) = (f, Tf) = (f, λf) = λ(f, f),

where we have used in the last equality the fact that the inner product is
conjugate linear in the second variable. Since f 6= 0, we must have λ = λ
and hence λ ∈ R.

For (ii), suppose f1 and f2 have eigenvalues λ1 and λ2, respectively.
By the previous argument both λ1 and λ2 are real, and we note that

λ1(f1, f2) = (λ1f1, f2)
= (Tf1, f2)

= (f1, T f2)
= (f1, λ2f2)

= λ2(f1, f2).

Since by assumption λ1 6= λ2 we must have (f1, f2) = 0 as desired.

For the next lemma note that every non-zero element of the null-space
of T − λI is an eigenvector with eigenvalue λ.

Lemma 6.4 Suppose T is compact, and λ 6= 0. Then the dimension of
the null space of T − λI is finite. Moreover, the eigenvalues of T form
at most a denumerable set λ1, . . . , λk, . . ., with λk → 0 as k →∞. More
specifically, for each µ > 0, the linear space spanned by the eigenvectors
corresponding to the eigenvalues λk with |λk| > µ is finite-dimensional.

Proof. Let Vλ denote the null-space of T − λI, that is, the eigenspace
of T corresponding to λ. If Vλ is not finite-dimensional, there exists
a countable sequence of orthonormal vectors {ϕk} in Vλ. Since T is
compact, there exists a subsequence {ϕnk

} such that T (ϕnk
) converges.
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But since T (ϕnk
) = λϕnk

and λ 6= 0, we conclude that ϕnk
converges,

which is a contradiction since ‖ϕnk
− ϕnk′‖2 = 2 if k 6= k′.

The rest of the lemma follows if we can show that for each µ > 0, there
are only finitely many eigenvalues whose absolute values are greater than
µ. We argue again by contradiction. Suppose there are infinitely many
distinct eigenvalues whose absolute values are greater than µ, and let
{ϕk} be a corresponding sequence of eigenvectors. Since the eigenvalues
are distinct, we know from the previous lemma that {ϕk} is orthogonal,
and after normalization, we may assume that this set of eigenvectors is
orthonormal. One again, since T is compact, we may find a subsequence
so that T (ϕnk

) converges, and since

T (ϕnk
) = λnk

ϕnk

the fact that |λnk
| > µ leads to a contradiction, since {ϕk} is an or-

thonormal set and thus ‖λnk
ϕnk

− λnj
ϕnj

‖2 = λ2
nk

+ λ2
nj
≥ 2µ2.

Lemma 6.5 Suppose T 6= 0 is compact and symmetric. Then either ‖T‖
or −‖T‖ is an eigenvalue of T .

Proof. By the observation (7) made earlier, either

‖T‖ = sup{(Tf, f) : ‖f‖ = 1} or − ‖T‖ = inf{(Tf, f) : ‖f‖ = 1}.

We assume the first case, that is,

λ = ‖T‖ = sup{(Tf, f) : ‖f‖ = 1},

and prove that λ is an eigenvalue of T . (The proof of the other case is
similar.)

We pick a sequence {fn} ⊂ H such that ‖fn‖ = 1 and (Tfn, fn) → λ.
Since T is compact, we may assume also (by passing to a subsequence of
{fn} if necessary) that {Tfn} converges to a limit g ∈ H. We claim that
g is an eigenvector of T with eigenvalue λ. To see this, we first observe
that Tfn − λfn → 0 because

‖Tfn − λfn‖2 = ‖Tfn‖2 − 2λ(Tfn, fn) + λ2‖fn‖2
≤ ‖T‖2‖fn‖2 − 2λ(Tfn, fn) + λ2‖fn‖2
≤ 2λ2 − 2λ(Tfn, fn) → 0.

Since Tfn → g, we must have λfn → g, and since T is continuous, this
implies that λTfn → Tg. This proves that λg = Tg. Finally, we must
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have g 6= 0, for otherwise ‖Tnfn‖ → 0, hence (Tfn, fn) → 0, and λ =
‖T‖ = 0, which is a contradiction.

We are now equipped with the necessary tools to prove the spectral
theorem. Let S denote the closure of the linear space spanned by all
eigenvectors of T . By Lemma 6.5, the space S is non-empty. The goal
is to prove that S = H. If not, then since

(9) S ⊕ S⊥ = H,

S⊥ would be non-empty. We will have reached a contradiction once
we show that S⊥ contains an eigenvector of T . First, we note that T
respects the decomposition (9). In other words, if f ∈ S then Tf ∈ S,
which follows from the definitions. Also, if g ∈ S⊥ then Tg ∈ S⊥. This
is because T is symmetric and maps S to itself, and hence

(Tg, f) = (g, Tf) = 0 whenever g ∈ S⊥ and f ∈ S.

Now consider the operator T1, which by definition is the restriction of
T to the subspace S⊥. The closed subspace S⊥ inherits its Hilbert space
structure from H. We see immediately that T1 is also a compact and
symmetric operator on this Hilbert space. Moreover, if S⊥ is non-empty,
the lemma implies that T1 has a non-zero eigenvector in S⊥. This eigen-
vector is clearly also an eigenvector of T , and therefore a contradiction
is obtained. This concludes the proof of the spectral theorem.

Some comments about Theorem 6.2 are in order. If in its statement we
drop either of the two assumptions (the compactness or symmetry of T ),
then T may have no eigenvectors. (See Exercises 32 and 33.) However,
when T is a general bounded linear transformation which is symmetric,
there is an appropriate extension of the spectral theorem that holds for
it. Its formulation and proof require further ideas that are deferred to
Chapter 6.

7 Exercises

1. Show that properties (i) and (ii) in the definition of a Hilbert space (Section 2)
imply property (iii): the Cauchy-Schwarz inequality |(f, g)| ≤ ‖f‖ · ‖g‖ and the
triangle inequality ‖f + g‖ ≤ ‖f‖+ ‖g‖.
[Hint: For the first inequality, consider (f + λg, f + λg) as a positive quadratic
function of λ. For the second, write ‖f + g‖2 as (f + g, f + g).]

2. In the case of equality in the Cauchy-Schwarz inequality we have the following.
If |(f, g)| = ‖f‖ ‖g‖ and g 6= 0, then f = cg for some scalar c.
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[Hint: Assume ‖f‖ = ‖g‖ = 1 and (f, g) = 1. Then f − g and g are orthogonal,
while f = f − g + g. Thus ‖f‖2 = ‖f − g‖2 + ‖g‖2.]

3. Note that ‖f + g‖2 = ‖f‖2 + ‖g‖2 + 2Re(f, g) for any pair of elements in a
Hilbert space H. As a result, verify the identity ‖f + g‖2 + ‖f − g‖2 = 2(‖f‖2 +
‖g‖2).

4. Prove from the definition that `2(Z) is complete and separable.

5. Establish the following relations between L2(Rd) and L1(Rd):

(a) Neither the inclusion L2(Rd) ⊂ L1(Rd) nor the inclusion L1(Rd) ⊂ L2(Rd)
is valid.

(b) Note, however, that if f is supported on a set E of finite measure and if f ∈
L2(Rd), applying the Cauchy-Schwarz inequality to fχE gives f ∈ L1(Rd),
and

‖f‖L1(Rd) ≤ m(E)1/2‖f‖L2(Rd).

(c) If f is bounded (|f(x)| ≤ M), and f ∈ L1(Rd), then f ∈ L2(Rd) with

‖f‖L2(Rd) ≤ M1/2‖f‖1/2

L1(Rd)
.

[Hint: For (a) consider f(x) = |x|−α, when |x| ≤ 1 or when |x| > 1.]

6. Prove that the following are dense subspaces of L2(Rd).

(a) The simple functions.

(b) The continuous functions of compact support.

7. Suppose {ϕk}∞k=1 is an orthonormal basis for L2(Rd). Prove that the collection
{ϕk,j}1≤k,j<∞ with ϕk,j(x, y) = ϕk(x)ϕj(y) is an orthonormal basis of L2(Rd ×
Rd).

[Hint: First verify that the {ϕk,j} are orthonormal, by Fubini’s theorem. Next,
for each j consider Fj(x) =

R
Rd F (x, y)ϕj(y) dy. If one assumes that (F, ϕk,j) = 0

for all j, then
R

Fj(x)ϕk(x) dx = 0.]

8. Let η(t) be a fixed strictly positive continuous function on [a, b]. Define Hη =
L2([a, b], η) to be the space of all measurable functions f on [a, b] such that

Z b

a

|f(t)|2η(t) dt < ∞.

Define the inner product on Hη by

(f, g)η =

Z b

a

f(t)g(t)η(t) dt.
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(a) Show that Hη is a Hilbert space, and that the mapping U : f 7→ η1/2f gives
a unitary correspondence between Hη and the usual space L2([a, b]).

(b) Generalize this to the case when η is not necessarily continuous.

9. Let H1 = L2([−π, π]) be the Hilbert space of functions F (eiθ) on the unit circle
with inner product (F, G) = 1

2π

R π

−π
F (eiθ)G(eiθ) dθ. Let H2 be the space L2(R).

Using the mapping

x 7→ i− x

i + x

of R to the unit circle, show that:

(a) The correspondence U : F → f , with

f(x) =
1

π1/2(i + x)
F

„
i− x

i + x

«

gives a unitary mapping of H1 to H2.

(b) As a result,


1

π1/2

„
i− x

i + x

«n
1

i + x

ff∞

n=−∞

is an orthonormal basis of L2(R).

10. Let S denote a subspace of a Hilbert space H. Prove that (S⊥)⊥ is the
smallest closed subspace of H that contains S.

11. Let P be the orthogonal projection associated with a closed subspace S in a
Hilbert space H, that is,

P (f) = f if f ∈ S and P (f) = 0 if f ∈ S⊥.

(a) Show that P 2 = P and P ∗ = P .

(b) Conversely, if P is any bounded operator satisfying P 2 = P and P ∗ = P ,
prove that P is the orthogonal projection for some closed subspace of H.

(c) Using P , prove that if S is a closed subspace of a separable Hilbert space,
then S is also a separable Hilbert space.

12. Let E be a measurable subset of Rd, and suppose S is the subspace of L2(Rd)
of functions that vanish for a.e. x /∈ E. Show that the orthogonal projection P on
S is given by P (f) = χE · f , where χE is the characteristic function of E.
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13. Suppose P1 and P2 are a pair of orthogonal projections on S1 and S2, respec-
tively. Then P1P2 is an orthogonal projection if and only if P1 and P2 commute,
that is, P1P2 = P2P1. In this case, P1P2 projects onto S1 ∩ S2.

14. Suppose H and H′ are two completions of a pre-Hilbert space H0. Show that
there is a unitary mapping from H to H′ that is the identity on H0.

[Hint: If f ∈ H, pick a Cauchy sequence {fn} in H0 that converges to f in H. This
sequence will also converge to an element f ′ in H′. The mapping f 7→ f ′ gives the
required unitary mapping.]

15. Let T be any linear transformation from H1 to H2. If we suppose that H1 is
finite-dimensional, then T is automatically bounded. (If H1 is not assumed to be
finite-dimensional this may fail; see Problem 1 below.)

16. Let F0(z) = 1/(1− z)i.

(a) Verify that |F0(z)| ≤ eπ/2 in the unit disc, but that limr→1 F0(r) does not
exist.

[Hint: Note that |F0(r)| = 1 and F0(r) oscillates between ±1 infinitely often
as r → 1.]

(b) Let {αn}∞n=1 be an enumeration of the rationals, and let

F (z) =

∞X
j=1

δjF0(ze−iαj ),

where δ is sufficiently small. Show that limr→1 F (reiθ) fails to exist when-
ever θ = αj , and hence F fails to have a radial limit for a dense set of points
on the unit circle.

17. Fatou’s theorem can be generalized by allowing a point to approach the
boundary in larger regions, as follows.

For each 0 < s < 1 and point z on the unit circle, consider the region Γs(z)
defined as the smallest closed convex set that contains z and the closed disc Ds(0).
In other words, Γs(z) consists of all lines joining z with points in Ds(0). Near the
point z, the region Γs(z) looks like a triangle. See Figure 2.

We say that a function F defined in the open unit disc has a non-tangential
limit at a point z on the circle, if for every 0 < s < 1, the limit

lim
w → z

w ∈ Γs(z)

F (w)

exists.
Prove that if F is holomorphic and bounded on the open unit disc, then F has

a non-tangential limit for almost every point on the unit circle.
[Hint: Show that the Poisson integral of a function f has non-tangential limits at
every point of the Lebesgue set of f .]
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Γs(z)

z

Figure 2. The region Γs(z)

18. Let H denote a Hilbert space, and L(H) the vector space of all bounded linear
operators on H. Given T ∈ L(H), we define the operator norm

‖T‖ = inf{B : ‖Tv‖ ≤ B‖v‖, for all v ∈ H}.

(a) Show that ‖T1 + T2‖ ≤ ‖T1‖+ ‖T2‖ whenever T1, T2 ∈ L(H).

(b) Prove that

d(T1, T2) = ‖T1 − T2‖

defines a metric on L(H).

(c) Show that L(H) is complete in the metric d.

19. If T is a bounded linear operator on a Hilbert space, prove that

‖TT ∗‖ = ‖T ∗T‖ = ‖T‖2 = ‖T ∗‖2.

20. Suppose H is an infinite-dimensional Hilbert space. We have seen an example
of a sequence {fn} in H with ‖fn‖ = 1 for all n, but for which no subsequence
of {fn} converges in H. However, show that for any sequence {fn} in H with
‖fn‖ = 1 for all n, there exist f ∈ H and a subsequence {fnk} such that for all
g ∈ H, one has

lim
k→∞

(fnk , g) = (f, g).

One says that {fnk} converges weakly to f .

[Hint: Let g run through a basis for H, and use a diagonalization argument. One
can then define f by giving its series expansion with respect to the chosen basis.]
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21. There are several senses in which a sequence of bounded operators {Tn} can
converge to a bounded operator T (in a Hilbert space H). First, there is con-
vergence in the norm, that is, ‖Tn − T‖ → 0, as n →∞. Next, there is a weaker
convergence, which happens to be called strong convergence, that requires that
Tnf → Tf , as n →∞, for every vector f ∈ H. Finally, there is weak conver-
gence (see also Exercise 20) that requires (Tnf, g) → (Tf, g) for every pair of
vectors f, g ∈ H.

(a) Show by examples that weak convergence does not imply strong convergence,
nor does strong convergence imply convergence in the norm.

(b) Show that for any bounded operator T there is a sequence {Tn} of bounded
operators of finite rank so that Tn → T strongly as n →∞.

22. An operator T is an isometry if ‖Tf‖ = ‖f‖ for all f ∈ H.

(a) Show that if T is an isometry, then (Tf, Tg) = (f, g) for every f, g ∈ H.
Prove as a result that T ∗T = I.

(b) If T is an isometry and T is surjective, then T is unitary and TT ∗ = I.

(c) Give an example of an isometry that is not unitary.

(d) Show that if T ∗T is unitary then T is an isometry.

[Hint: Use the fact that (Tf, Tf) = (f, f) for f replaced by f ± g and f ± ig.]

23. Suppose {Tk} is a collection of bounded operators on a Hilbert space H, with
‖Tk‖ ≤ 1 for all k. Suppose also that

TkT ∗j = T ∗k Tj = 0 for all k 6= j.

Let SN =
PN

k=−N Tk.
Show that SN (f) converges as N →∞, for every f ∈ H. If T (f) denotes the

limit, prove that ‖T‖ ≤ 1.
A generalization is given in Problem 8∗ below.

[Hint: Consider first the case when only finitely many of the Tk are non-zero, and
note that the ranges of the Tk are mutually orthogonal.]

24. Let {ek}∞k=1 denote an orthonormal set in a Hilbert space H. If {ck}∞k=1 is a
sequence of positive real numbers such that

P
c2

k < ∞, then the set

A = {
∞X

k=1

akek : |ak| ≤ ck}

is compact in H.

25. Suppose T is a bounded operator that is diagonal with respect to a basis {ϕk},
with Tϕk = λkϕk. Then T is compact if and only if λk → 0.
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[Hint: If λk → 0, then note that ‖PnT − T‖ → 0, where Pn is the orthogonal
projection on the subspace spanned by ϕ1, ϕ2, . . . , ϕn. ]

26. Suppose w is a measurable function on Rd with 0 < w(x) < ∞ for a.e. x, and
K is a measurable function on R2d that satisfies:

(i)

Z

Rd

|K(x, y)|w(y) dy ≤ Aw(x) for almost every x ∈ Rd, and

(ii)

Z

Rd

|K(x, y)|w(x) dx ≤ Aw(y) for almost every y ∈ Rd.

Prove that the integral operator defined by

Tf(x) =

Z

Rd

K(x, y)f(y) dy, x ∈ Rd

is bounded on L2(Rd) with ‖T‖ ≤ A.
Note as a special case that if

R |K(x, y)| dy ≤ A for all x, and
R |K(x, y)| dx ≤ A

for all y, then ‖T‖ ≤ A.

[Hint: Show that if f ∈ L2(Rd), then

Z
|K(x, y)| |f(y)| dy ≤ A1/2w(x)1/2

»Z
|K(x, y)| |f(y)|2w(y)−1 dy

–1/2

.]

27. Prove that the operator

Tf(x) =
1

π

Z ∞

0

f(y)

x + y
dy

is bounded on L2(0,∞) with norm ‖T‖ ≤ 1.

[Hint: Use Exercise 26 with an appropriate w.]

28. Suppose H = L2(B), where B is the unit ball in Rd. Let K(x, y) be a mea-
surable function on B ×B that satisfies |K(x, y)| ≤ A|x− y|−d+α for some α > 0,
whenever x, y ∈ B. Define

Tf(x) =

Z

B

K(x, y)f(y)dy.

(a) Prove that T is a bounded operator on H.

(b) Prove that T is compact.

(c) Note that T is a Hilbert-Schmidt operator if and only if α > d/2.

[Hint: For (b), consider the operators Tn associated with the truncated kernels
Kn(x, y) = K(x, y) if |x− y| ≥ 1/n and 0 otherwise. Show that each Tn is compact,
and that ‖Tn − T‖ → 0 as n →∞.]

29. Let T be a compact operator on a Hilbert space H, and assume λ 6= 0.
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(a) Show that the range of λI − T defined by

{g ∈ H : g = (λI − T )f, for some f ∈ H}

is closed. [Hint: Suppose gj → g, where gj = (λI − T )fj . Let Vλ denote
the eigenspace of T corresponding to λ, that is, the kernel of λI − T . Why
can one assume that fj ∈ V ⊥

λ ? Under this assumption prove that {fj} is a
bounded sequence.]

(b) Show by example that this may fail when λ = 0.

(c) Show that the range of λI − T is all of H if and only if the null-space of
λI − T ∗ is trivial.

30. Let H = L2([−π, π]) with [−π, π] identified as the unit circle. Fix a bounded
sequence {λn}∞n=−∞ of complex numbers, and define an operator Tf by

Tf(x) ∼
∞X

n=−∞
λnaneinx whenever f(x) ∼

∞X
n=−∞

aneinx.

Such an operator is called a Fourier multiplier operator, and the sequence
{λn} is called the multiplier sequence.

(a) Show that T is a bounded operator on H and ‖T‖ = supn |λn|.
(b) Verify that T commutes with translations, that is, if we define τh(x) =

f(x− h) then

T ◦ τh = τh ◦ T for every h ∈ R.

(c) Conversely, prove that if T is any bounded operator on H that commutes
with translations, then T is a Fourier multiplier operator. [Hint: Consider
T (einx).]

31. Consider a version of the sawtooth function defined on [−π, π) by5

K(x) = i(sgn(x)π − x),

and extended to R with period 2π. Suppose f ∈ L1([−π, π]) is extended to R with
period 2π, and define

Tf(x) =
1

2π

Z π

−π

K(x− y)f(y) dy

=
1

2π

Z π

−π

K(y)f(x− y) dy.

5The symbol sgn(x) denotes the sign function: it equals 1 or −1 if x is positive or
negative respectively, and 0 if x = 0.
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(a) Show that F (x) = Tf(x) is absolutely continuous, and if
R π

−π
f(y)dy = 0,

then F ′(x) = if(x) a.e. x.

(b) Show that the mapping f 7→ Tf is compact and symmetric on L2([−π, π]).

(c) Prove that ϕ(x) ∈ L2([−π, π]) is an eigenfunction for T if and only if ϕ(x)
is (up to a constant multiple) equal to einx for some integer n 6= 0 with
eigenvalue 1/n, or ϕ(x) = 1 with eigenvalue 0.

(d) Show as a result that {einx}n∈Z is an orthonormal basis of L2([−π, π]).

Note that in Book I, Chapter 2, Exercise 8, it is shown that the Fourier series
of K is

K(x) ∼
X

n6=0

einx

n
.

32. Consider the operator T : L2([0, 1]) → L2([0, 1]) defined by

T (f)(t) = tf(t).

(a) Prove that T is a bounded linear operator with T = T ∗, but that T is not
compact.

(b) However, show that T has no eigenvectors.

33. Let H be a Hilbert space with basis {ϕk}∞k=1. Verify that the operator T
defined by

T (ϕk) =
1

k
ϕk+1

is compact, but has no eigenvectors.

34. Let K be a Hilbert-Schmidt kernel which is real and symmetric. Then, as we
saw, the operator T whose kernel is K is compact and symmetric. Let {ϕk(x)} be
the eigenvectors (with eigenvalues λk) that diagonalize T . Then:

(a)
P

k |λk|2 < ∞.

(b) K(x, y) ∼Pλkϕk(x)ϕk(y) is the expansion of K in the basis {ϕk(x)ϕk(y)}.

(c) Suppose T is a compact operator which is symmetric. Then T is of Hilbert-
Schmidt type if and only if

P
n |λn|2 < ∞, where {λn} are the eigenvalues

of T counted according to their multiplicities.

35. Let H be a Hilbert space. Prove the following variants of the spectral theorem.
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(a) If T1 and T2 are two linear symmetric and compact operators on H that
commute (that is, T1T2 = T2T1), show that they can be diagonalized simul-
taneously. In other words, there exists an orthonormal basis for H which
consists of eigenvectors for both T1 and T2.

(b) A linear operator on H is normal if TT ∗ = T ∗T . Prove that if T is normal
and compact, then T can be diagonalized.

[Hint: Write T = T1 + iT2 where T1 and T2 are symmetric, compact and
commute.]

(c) If U is unitary, and U = λI − T , where T is compact, then U can be diago-
nalized.

8 Problems

1. Let H be an infinite-dimensional Hilbert space. There exists a linear functional
` defined on H that is not bounded (and hence not continuous).

[Hint: Using the axiom of choice (or one of its equivalent forms), construct an
algebraic basis ofH, {eα}; it has the property that every element ofH is uniquely
a finite linear combination of the {eα}. Select a denumerable collection {en}∞n=1,
and define ` to satisfy the requirement that `(en) = n‖en‖ for all n ∈ N.]

2.∗ The following is an example of a non-separable Hilbert space. We consider
the collection of exponentials {eiλx} on R, where λ ranges over the real numbers.
Let H0 denote the space of finite linear combinations of these exponentials. For
f, g ∈ H0, we define the inner product as

(f, g) = lim
T→∞

1

2T

Z T

−T

f(x)g(x) dx.

(a) Show that this limit exists, and

(f, g) =

NX

k=1

aλkbλk

if f(x) =
PN

k=1 aλkeiλkx and g(x) =
PN

k=1 bλkeiλkx.

(b) With this inner product H0 is a pre-Hilbert space. Notice that ‖f‖ ≤
supx |f(x)|, if f ∈ H0, where ‖f‖ denotes the norm 〈f, f〉1/2. Let H be

the completion of H0. Then H is not separable because eiλx and eiλ′x are
orthonormal if λ 6= λ′.

A continuous function F defined on R is called almost periodic if it is the
uniform limit (on R) of elements in H0. Such functions can be identified
with (certain) elements in the completion H: We haveH0 ⊂ AP ⊂ H, where
AP denotes the almost periodic functions.
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(c) A continuous function F is in AP if for every ε > 0 we can find a length
L = Lε such that any interval I ⊂ R of length L contains an “almost period”
τ satisfying

sup
x
|F (x + τ)− F (x)| < ε.

(d) An equivalent characterization is that F is in AP if and only if every se-
quence F (x + hn) of translates of F contains a subsequence that converges
uniformly.

3. The following is a direct generalization of Fatou’s theorem: if u(reiθ) is harmonic
in the unit disc and bounded there, then limr→1 u(reiθ) exists for a.e. θ.

[Hint: Let an(r) = 1
2π

R 2π

0
u(reiθ)e−inθ dθ. Then a′′n(r) + 1

r
a′n(r)− n2

r2 an(r) = 0,

hence an(r) = Anrn + Bnr−n, n 6= 0, and as a result6 u(reiθ) =
P∞
−∞ anr|n|einθ.

From this one can proceed as in the proof of Theorem 3.3.]

4.∗ This problem provides some examples of functions that fail to have radial limits
almost everywhere.

(a) At almost every point of the boundary unit circle, the function
P∞

n=0 z2n

fails to have a radial limit.

(b) More generally, suppose F (z) =
P∞

n=0 anz2n

. Then, if
P |an|2 = ∞ the

function F fails to have radial limits at almost every boundary point. How-
ever, if

P |an|2 < ∞, then F ∈ H2(D), and we know by the proof of Theo-
rem 3.3 that F does have radial limits almost everywhere.

5.∗ Suppose F is holomorphic in the unit disc, and

sup
0≤r<1

1

2π

Z π

−π

log+ |F (reiθ)| dθ < ∞,

where log+ u = log u if u ≥ 1, and log+ u = 0 if u < 1.
Then limr→1 F (reiθ) exists for almost every θ.
The above condition is satisfied whenever (say)

sup
0≤r<1

1

2π

Z π

−π

|F (reiθ)|p dθ < ∞, for some p > 0,

(since epu ≥ pu, u ≥ 0).
Functions that satisfy the latter condition are said to belong to the Hardy

space Hp(D).

6.∗ If T is compact, and λ 6= 0, show that

6See also Section 5, Chapter 2 in Book I.
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(a) λI − T is injective if and only if λI − T ∗ is injective.

(b) λI − T is injective if and only if λI − T is surjective.

This result, known as the Fredholm alternative, is often combined with that in
Exercise 29.

7. Show that the identity operator on L2(Rd) cannot be given as an (absolutely)
convergent integral operator. More precisely, if K(x, y) is a measurable function
on Rd × Rd with the property that for each f ∈ L2(Rd), the integral T (f)(x) =R
Rd K(x, y)f(y) dy converges for almost every x, then T (f) 6= f for some f .

[Hint: Prove that otherwise for any pair of disjoint balls B1 and B2 in Rd, we
would have that K(x, y) = 0 for a.e. (x, y) ∈ B1 ×B2.]

8.∗ Suppose {Tk} is a collection of bounded opeartors on a Hilbert space H. As-
sume that

‖TkT ∗j ‖ ≤ ak−j and ‖T ∗k Tj‖ ≤ a∗k−j ,

for positive constants {an} with the property that
P∞
−∞ an = A < ∞. Then

SN (f) converges as N →∞, for every f ∈ H, with SN =
PN
−N Tk. Moreover,

T = limN→∞ SN satisfies ‖T‖ ≤ A.

9. A discussion of a class of regular Sturm-Liouville operators follows. Other
special examples are given in the problems below.

Suppose [a, b] is a bounded interval, and L is defined on functions f that are
twice continuously differentiable in [a, b] (we write, f ∈ C2([a, b])) by

L(f)(x) =
d2f

dx2
− q(x)f(x).

Here the function q is continuous and real-valued on [a, b], and we assume for
simplicity that q is non-negative. We say that ϕ ∈ C2([a, b]) is an eigenfunction
of L with eigenvalue µ if L(ϕ) = µϕ, under the assumption that ϕ satisfies the
boundary conditions ϕ(a) = ϕ(b) = 0. Then one can show:

(a) The eigenvalues µ are strictly negative, and the eigenspace corresponding
to each eigenvalue is one-dimensional.

(b) Eigenvectors corresponding to distinct eigenvalues are orthogonal in L2([a, b]).

(c) Let K(x, y) be the “Green’s kernel” defined as follows. Choose ϕ−(x) to be
a solution of L(ϕ−) = 0, with ϕ−(a) = 0 but ϕ′−(a) 6= 0. Similarly, choose
ϕ+(x) to be a solution of L(ϕ+) = 0 with ϕ+(b) = 0, but ϕ′+(b) 6= 0. Let
w = ϕ′+(x)ϕ−(x)− ϕ′−(x)ϕ+(x), be the “Wronskian” of these solutions, and
note that w is a non-zero constant.

Set

K(x, y) =

(
ϕ−(x)ϕ+(y)

w
if a ≤ x ≤ y ≤ b,

ϕ+(x)ϕ−(y)

w
if a ≤ y ≤ x ≤ b.
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Then the operator T defined by

T (f)(x) =

Z b

a

K(x, y)f(y) dy

is a Hilbert-Schmidt operator, and hence compact. It is also symmetric.
Moreover, whenever f is continuous on [a, b], Tf is of class C2([a, b]) and

L(Tf) = f.

(d) As a result, each eigenvector of T (with eigenvalue λ) is an eigenvector of L
(with eigenvalue µ = 1/λ). Hence Theorem 6.2 proves the completeness of
the orthonormal set arising from normalizing the eigenvectors of L.

10.∗ Let L be defined on C2([−1, 1]) by

L(f)(x) = (1− x2)
d2f

dx2
− 2x

df

dx
.

If ϕn is the nth Legendre polynomial, given by

ϕn(x) =

„
d

dx

«n

(1− x2)n, n = 0, 1, 2, . . . ,

then Lϕn = −n(n + 1)ϕn.
When normalized the ϕn form an orthonormal basis of L2([−1, 1]) (see also

Problem 2, Chapter 3 in Book I, where ϕn is denoted by Ln.)

11.∗ The Hermite functions hk(x) are defined by the generating identity

∞X

k=0

hk(x)
tk

k!
= e−(x2/2−2tx+t2).

(a) They satisfy the “creation” and “annihilation” identities
`
x− d

dx

´
hk(x) =

hk+1(x) and
`
x + d

dx

´
hk(x) = hk−1(x) for k ≥ 0 where h−1(x) = 0. Note

that h0(x) = e−x2/2, h1(x) = 2xe−x2/2, and more generally hk(x) =

Pk(x)e−x2/2, where Pk is a polynomial of degree k.

(b) Using (a) one sees that the hk are eigenvectors of the operator L = −d2/dx2 +
x2, with L(hk) = λkhk, where λk = 2k + 1. One observes that these func-
tions are mutually orthogonal. Since

Z

R
[hk(x)]2 dx = π1/22kk! = ck,

we can normalize them obtaining a orthonormal sequence {Hk}, with Hk =

c
−1/2
k hk. This sequence is complete in L2(Rd) since

R
R fHk dx = 0 for all k

implies
R∞
−∞ f(x)e−

x2
2 +2tx dx = 0 for all t ∈ C.
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(c) Suppose that K(x, y) =
P∞

k=0
Hk(x)Hk(y)

λk
, and also F (x) = T (f)(x) =R

R K(x, y)f(y) dy. Then T is a symmetric Hilbert-Schmidt operator, and
if f ∼P∞

k=0 akHk, then F ∼P∞
k=0

ak
λk

Hk.

One can show on the basis of (a) and (b) that whenever f ∈ L2(R), not only is
F ∈ L2(R), but also x2F (x) ∈ L2(R). Moreover, F can be corrected on a set of
measure zero, so it is continuously differentiable, F ′ is absolutely continuous, and
F ′′ ∈ L2(R). Finally, the operator T is the inverse of L in the sense that

LT (f) = LF = −F ′′ + x2F = f for every f ∈ L2(R).

(See also Problem 7* in Chapter 5 of Book I.)




