MAT 1001 / 458 : Real Analysis II Midterm Test, March 9, 2022

(Four problems; 20 points each. Time: 1 hour 50 minutes.)

Please be brief but justify your answers, citing relevant theorems.

1. For t > 0 and $x, y \in \mathbb{R}^n$, let $K(x, y; t) = (4\pi t)^{-\frac{n}{2}} e^{-\frac{|x-y|^2}{4t}}$. Given an integrable function f on \mathbb{R}^n , set

$$u(x;t) := \int_{\mathbb{R}^n} f(y) K(x,y;t) \, dy \,, \qquad t > 0, x \in \mathbb{R}^n \,.$$

- (a) Fix t > 0. Prove that the function $u(\cdot; t)$ lies in $L^p(\mathbb{R}^n)$ for every $p \in [1, \infty]$, and give a bound on its norm. (*Hint:* First find $\int_{\mathbb{R}^n} K(x, y; t) \, dy$ and $\max_{x,y} K(x, y; t)$.)
- (b) Determine a sufficient condition on p such that $u \in L^p(\mathbb{R}^n \times (0, 1))$.
- 2. Let ϕ be a proper convex lower continuous functional on a Banach space X.
 - (a) Define the Fenchel-Legendre transform of ϕ , and state the Fenchel-Moreau theorem.
 - (b) Let $(x_n)_{n\geq 1}$ be a sequence in X. If $x_n \rightharpoonup a$ weakly, prove that

$$\phi(a) \leq \liminf_{n \to \infty} \phi(x_n).$$

(Remark: There are many different ways to argue this; I suggest to use Part (a).)

- 3. Let $f \in C^{\infty}(\mathbb{R})$ be a smooth real-valued function. Suppose that that for each $x \in \mathbb{R}$ there exists some integer $n = n_x \in \mathbb{N}$ such that $f^{(n)}(x) = 0$. Show that there exists a nonempty open interval $(a, b) \subset \mathbb{R}$ such that the restriction of f to (a, b) is a polynomial.
- 4. Let X be a reflexive Banach space, with dual space X^* .
 - (a) Let $V \subset X$ be a closed subspace. Prove that V is reflexive. How is V^* related to X^* ?
 - (b) State the Banach-Alaoglu theorem.
 - (c) Let (x_n)_{n≥1} be a bounded sequence in X. Explain in detail how to prove that (x_n) has a weakly convergent subsequence.
 Hint: This will require several lines of argument. Start by considering the separable,

closed subspace $V = \overline{\text{span} \{x_n, n = 1, 2, ...\}}$.