MAT 1001 / 458 : Real Analysis II
 Midterm Test, March 9, 2022

(Four problems; 20 points each. Time: 1 hour 50 minutes.)
Please be brief but justify your answers, citing relevant theorems.

1. For $t>0$ and $x, y \in \mathbb{R}^{n}$, let $K(x, y ; t)=(4 \pi t)^{-\frac{n}{2}} e^{-\frac{|x-y|^{2}}{4 t}}$.

Given an integrable function f on \mathbb{R}^{n}, set

$$
u(x ; t):=\int_{\mathbb{R}^{n}} f(y) K(x, y ; t) d y, \quad t>0, x \in \mathbb{R}^{n}
$$

(a) Fix $t>0$. Prove that the function $u(\cdot ; t)$ lies in $L^{p}\left(\mathbb{R}^{n}\right)$ for every $p \in[1, \infty]$, and give a bound on its norm. (Hint: First find $\int_{\mathbb{R}^{n}} K(x, y ; t) d y$ and $\max _{x, y} K(x, y ; t)$.)
(b) Determine a sufficient condition on p such that $u \in L^{p}\left(\mathbb{R}^{n} \times(0,1)\right)$.
2. Let ϕ be a proper convex lower continuous functional on a Banach space X.
(a) Define the Fenchel-Legendre transform of ϕ, and state the Fenchel-Moreau theorem.
(b) Let $\left(x_{n}\right)_{n \geq 1}$ be a sequence in X. If $x_{n} \rightharpoonup a$ weakly, prove that

$$
\phi(a) \leq \liminf _{n \rightarrow \infty} \phi\left(x_{n}\right)
$$

(Remark: There are many different ways to argue this; I suggest to use Part (a).)
3. Let $f \in C^{\infty}(\mathbb{R})$ be a smooth real-valued function. Suppose that that for each $x \in \mathbb{R}$ there exists some integer $n=n_{x} \in \mathbb{N}$ such that $f^{(n)}(x)=0$. Show that there exists a nonempty open interval $(a, b) \subset \mathbb{R}$ such that the restriction of f to (a, b) is a polynomial.
4. Let X be a reflexive Banach space, with dual space X^{*}.
(a) Let $V \subset X$ be a closed subspace. Prove that V is reflexive.

How is V^{*} related to X^{*} ?
(b) State the Banach-Alaoglu theorem.
(c) Let $\left(x_{n}\right)_{n \geq 1}$ be a bounded sequence in X. Explain in detail how to prove that $\left(x_{n}\right)$ has a weakly convergent subsequence.
Hint: This will require several lines of argument. Start by considering the separable, closed subspace $V=\operatorname{span}\left\{x_{n}, n=1,2, \ldots\right\}$.

