MAT 1001 / 458 : Real Analysis II Midterm Test, March 4, 2020

(Four problems; 20 points each. Time: 2 hours.)

Please be brief but justify your answers, citing relevant theorems.

1. Equivalent norms. Let X be a Banach space with norm $|| \cdot ||_1$. Suppose $|| \cdot ||_2$ is another norm that also makes X into a Banach space. You will prove that that there are constants C_1, C_2 such that

for all $x \in X$: $||x||_2 \le C_1 ||x||_1$ and $||x||_1 \le C_2 ||x||_2$.

- (a) Prove the claim in the special case where $||x||_2 \le ||x||_1$.
- (b) Prove the claim in general.

Hint: Compare both norms with their sum $|| \cdot || = || \cdot ||_1 + || \cdot ||_2$. You will need to verify that this is a norm that also makes X into a Banach space.

2. In class, we have defined the Fourier coefficients of a 2π -periodic integrable function by

$$\hat{f}(k) = \frac{1}{2\pi} \int_{i\pi}^{\pi} f(x) e^{-ikx} dx, \qquad (k \in \mathbb{Z})$$

Let p, q be dual Hölder exponents.

- (a) For each $p \in [1,2]$, the map $f \mapsto (\hat{f}(k))_{k \in \mathbb{Z}}$ defines a linear transformation from $L^p(-\pi,\pi)$ (the space of *p*-integrable functions) to ℓ^q (the space of *q*-summable sequences). Show that this transformation is bounded, and give a bound on its norm.
- (b) In the special case p = 1, show that this map is not surjective, by proving that

$$\lim_{k\to\pm\infty}\hat{f}(k)=0$$
 for all $f\in L^1(-\pi,\pi).$ (*Hint:* L^2 is dense in $L^1.$)

- 3. Construct two subsets M, N of the unit interval such that
 - (a) $M \cup N = [0, 1];$

(b) M is a countable union of nowhere dense subsets, and N has Lebesgue measure zero.

(*Hint:* Consider the rationals in [0, 1].)

- 4. Let A be a bounded linear operator on a Hilbert space.
 - (a) If $x_n \rightharpoonup x$ weakly in *H*, prove that $Ax_n \rightharpoonup Ax$ weakly in *H*.
 - (b) If $x_n \rightharpoonup x$ weakly, and $y_n \rightarrow y$ (strongly) in H, prove that $\langle x_n, y_n \rangle \rightarrow \langle x, y \rangle$.

Assume that A has the following three properties:

- *Hermitian:* $\langle Ax, y \rangle = \langle x, Ay \rangle$ for all $x, y \in H$;
- *positive definite:* $\langle Ax, x \rangle > 0$ for all $x \neq 0$;
- compact: If (x_n) is a bounded sequence, then (Ax_n) has a convergent subsequence.

Define $\overline{\lambda} := \sup_{||x||=1} \langle Ax, x \rangle.$

(c) Prove that the supremum is attained, i.e., there exists $x^* \in H$ with $||x^*|| = 1$ such that $\langle Ax^*, x^* \rangle = \overline{\lambda}$. (Consider a maximizing sequence (x_n) .)