MAT 1001 / 458 : Real Analysis II
 Midterm Test, March 4, 2020

(Four problems; 20 points each. Time: 2 hours.)
Please be brief but justify your answers, citing relevant theorems.

1. Equivalent norms. Let X be a Banach space with norm $\|\cdot\|_{1}$. Suppose $\|\cdot\|_{2}$ is another norm that also makes X into a Banach space. You will prove that that there are constants C_{1}, C_{2} such that

$$
\text { for all } x \in X: \quad\|x\|_{2} \leq C_{1}\|x\|_{1} \text { and }\|x\|_{1} \leq C_{2}\|x\|_{2}
$$

(a) Prove the claim in the special case where $\|x\|_{2} \leq\|x\|_{1}$.
(b) Prove the claim in general.

Hint: Compare both norms with their sum $\|\cdot\|=\|\cdot\|_{1}+\|\cdot\|_{2}$.
You will need to verify that this is a norm that also makes X into a Banach space.
2. In class, we have defined the Fourier coefficients of a 2π-periodic integrable function by

$$
\hat{f}(k)=\frac{1}{2 \pi} \int_{i \pi}^{\pi} f(x) e^{-i k x} d x, \quad(k \in \mathbb{Z})
$$

Let p, q be dual Hölder exponents.
(a) For each $p \in[1,2]$, the map $f \mapsto(\hat{f}(k))_{k \in \mathbb{Z}}$ defines a linear transformation from $L^{p}(-\pi, \pi)$ (the space of p-integrable functions) to ℓ^{q} (the space of q-summable sequences). Show that this transformation is bounded, and give a bound on its norm.
(b) In the special case $p=1$, show that this map is not surjective, by proving that

$$
\lim _{k \rightarrow \pm \infty} \hat{f}(k)=0
$$

for all $f \in L^{1}(-\pi, \pi)$. (Hint: L^{2} is dense in L^{1}.)
3. Construct two subsets M, N of the unit interval such that
(a) $M \cup N=[0,1]$;
(b) M is a countable union of nowhere dense subsets, and N has Lebesgue measure zero.
(Hint: Consider the rationals in $[0,1]$.)
4. Let A be a bounded linear operator on a Hilbert space.
(a) If $x_{n} \rightharpoonup x$ weakly in H, prove that $A x_{n} \rightharpoonup A x$ weakly in H.
(b) If $x_{n} \rightharpoonup x$ weakly, and $y_{n} \rightarrow y$ (strongly) in H, prove that $\left\langle x_{n}, y_{n}\right\rangle \rightarrow\langle x, y\rangle$.

Assume that A has the following three properties:

- Hermitian: $\langle A x, y\rangle=\langle x, A y\rangle$ for all $x, y \in H$;
- positive definite: $\langle A x, x\rangle>0$ for all $x \neq 0$;
- compact: If $\left(x_{n}\right)$ is a bounded sequence, then $\left(A x_{n}\right)$ has a convergent subsequence.

Define $\bar{\lambda}:=\sup _{\|x\|=1}\langle A x, x\rangle$.
(c) Prove that the supremum is attained, i.e., there exists $x^{*} \in H$ with $\left\|x^{*}\right\|=1$ such that $\left\langle A x^{*}, x^{*}\right\rangle=\bar{\lambda}$. (Consider a maximizing sequence $\left(x_{n}\right)$.)

