
The Fourier 

Tr ansform 

Chapter 5 

The Fourier transform is a versatile tool in analysis , much loved by ana­
lysts , scientists and engineers . (In fact , in our definition below we use the 
engineer's convention about the placement of 21r, which eliminates the an­
noyance of having to multiply integrals by 21r. )  The virtue of the Fourier 
transform is that it converts the operations of differentiation and convolution 
into multiplication operations. In particular it allows us to define the rela­
tivistic operators FfS. and J-� + m2 and the space H112 (JRn) in Chapter 
7. Some references for the Fourier transform are [Hormander] , [Rudin, 1991] , 
[Reed-Simon, Vol. 2] , [Schwartz] and [Stein-Weiss] . 

5 . 1  DEFINITION OF THE L1 FOURIER 
TRANSFORM 

-
Let f be a function in £1 (JRn) . The Fourier transform of f, denoted by f, 
is the function on JRn given by 

where 

] (k) = r e-21n(k ,x) f (x) dx }JRn 

n 
(k , x) : = L kzXz . 

z=l 

( 1 )  

-
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The following algebraic properties are the main motivation for studying 
the Fourier transform. They are very easy to prove. 

-
The map f t---t f is linear in j, 
-;;:}(k) = e-21ri(k,h)f(k) , h E JRn ' 

(2) 

(3) 

(4) 

where Th is the translation operator , ( rhf) ( x) = f ( x - h) , and 6.\ is the 
scaling operator, (6.\f) (x) = f(xj..\) . 

Two other easy to prove facts are 

..-
! is a continuous (and hence measurable) function. (6) 

The latter follows from dominated convergence. In fact it is part of the -
Riemann-Lebesgue lemma, which also states that f(k) --+ 0 as l k l --+ oo -
(see Exercise 2) . Note that 1 1 / l l oo equals l l f l l 1 whenever f is any nonnegative 
function; in that case 

I I J i i oo = ](0) = J J = I I J I I 1 · 

Recall from Sect . 2 . 1 5  that the convolution of two functions f and g , 
both in L1 (JRn) ,  is given by 

(f * g) (x) = r f(x - y)g(y) dy. }JRn 

By Fubini 's theorem f * g E L1 (JRn) ,  and also by Fubini 's theorem 

(J:g)(k) = r e-21ri (k ,x) r f(x - y)g(y) dy dx 
}JRn }JRn 

(7) 

= r e-21ri(k,y)g (y) r e-2?ri(k, (x-y) ) j (x - y) dx dy (8) 
}JRn }JRn 
..-

= f( k)g(k) . 

The following is an important example . 
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5.2 THEOREM {Fourier transform of a Gaussian) 

For ,\ > 0, denote by 9).. the Gaussian function on JRn given by 

for x E JRn . Then 

REMARK. This is a special case of Exercise 4.4 . 

PROOF. By 5 . 1 (4) it suffices to consider ,\ =  1 .  Since 

n 
91 (x) = IT exp [-7r(xi ) 2] ,  

i=1 
it suffices to consider n = 1 .  By definition (since 91 E £1 (JR) ) 

91 (k) = l e-21ri (x ,k) exp [-1rx2] dx = 91 (k)j (k) ,  

where 
f(k) = l exp [-1r(x + ik)2] dx . 
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( 1 )  

(2) 

A simple limiting argument using the dominated convergence theorem allows 
us to differentiate (2) under the integral sign as many times as we like. 
Therefore f E C00 (JR) and 

�� (k) = -27ri l (x + ik) exp [-1r(x + ik)2] dx 

= i l d� exp [-1r(x + ik) 2] dx 
00 = i exp [-1r(x + ik)2] = 0, 
- oo 

i .e. , f(k) is constant . But / (0) = fiR exp [-1rx2] dx = 1 .  • 

e The Fourier transform can be defined for functions for which 5 . 1 ( 1 )  does 
not make sense. In particular , it is important for quantum mechanics to -
define f for f E L2 (JRn) .  One route to this definition goes via the Schwartz 
space S (which we will not discuss here) . The method below uses only 
Theorem 2 . 16 (approximation by C00-functions) .  We begin by considering 
functions in £1 (JRn ) n £2 (JRn) ' which are dense in £2 (JRn ) . 
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5 .3 THEOREM {Plancherel's theorem) 

If f E L1 (JRn) n L2 (JRn) ,  then f is in L2 (JRn) and the following formula of 
Plancherel holds: -

1 1 / 1 1 2 = 1 1 / 1 1 2 · ( 1 )  
-

The map f t---t f has a unique extension to a continuous, linear map from 
L2 (JRn) into L2 (JRn) which is an isometry, i . e . , Plancherel 's formula ( 1 )  -
holds for this extension. We continue to denote this map by f t---t f ( even if 
J t/: £1 (JRn) ) . 

If f and g are in L2 (JRn) ,  then Parseval 's formula holds, 

(f, g ) := r f (x)g (x) dx = r ](k)9(k) dk = (} , g) . (2) }�n }�n 

-
PROOF. For f E L1 (JRn) nL2 (JRn) ,  the function f(k) is bounded, by 5 . 1 (5) , 
and hence 

(3) 

is defined . Since f E L1 (JRn) ,  the function f(x)f (y) exp [-c7r l k l 2] of three 
variables is in L1 (JR3n) .  Using Fubini 's theorem and Theorem 5 .2 we can 
express ( 3) as 

r j (x )f (y ) e21ri(k , (x-y) ) exp [ -c1rk2] dx dy dk 
}�3n 

= c-n/2 exp - f(x)f (y) dx dy . 1 [ 1r(x _ y) 2 ] _ 

�2n c 

Using Theorem 2 . 16 (approximation by C00-functions) 

(4) 

in L2 (JRn) as c --+ 0, and hence (using Fubini's theorem again) (3) tends to 
J�n lf (x) l 2 dx . This shows that (3) is uniformly bounded in c and the mono--
tone convergence theorem therefore shows that f E L2 (JRn) with 

-
1 1 ! 1 1 2 = 1 1 ! 1 1 2 · (5) 

Now let f be in L2 (JRn) but not in L1 (JRn) n L2 (JRn) .  Since L1 (JRn) n 
£2 (JRn) is dense in £2 (JRn) ,  there exists a sequence fj E £1 (JRn) n £2 (JRn) 
such that I I ! - fJ l l 2 --+ 0 .  By (5) l l fj - ]m l l 2 = l l fj - fm l l 2 and hence f

j 
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is a Cauchy sequence in £2 (JRn) that converges to some function in £2 (JRn) ,  - -
which we call f . It is obvious from (5) that f does not depend on the choice 
of the sequence f j . Moreover , 

The continuity (in £2 (JRn) )  and the linearity of this map is left to the reader . 
Relation (2) follows from ( 1 )  by polarization, i .e . , the identity 

1 (!, g) =  2 { I I ! + 9 1 1 � - i l l ! + ig l l � - ( 1 - i) l l f l l � - ( 1 - i) l l g i iD · 

Applying ( 1 )  to each of these four norms yields (2) . 

5.4 DEFINITION OF THE L2 FOURIER 
TRANSFORM 

• 

-
For each f in L2 (JRn) ,  the L2 (JRn)-function f defined by the limit given in 
Theorem 5 .3 is called the Fourier transform of f . 

Theorem 5 .3 is remarkable because it states that for any given f E -
L2 (JRn) one can compute its Fourier transform f by using any L1 (JRn)-
approximating sequence whatsoever and one always obtains , as an L2 (JRn) -
limit , a function f which is independent of the approximation. Here are two 
examples with the index j = 1 ,  2 , 3, . . .  : 

jJ (k) = f e-21ri (k,x) f(x) dx , ( 1 )  Jlx i <J 
hJ (k) = { cos( l x l 2 jj ) exp [- lx l 2 jj] e-21ri (k,x) f(x) dx . (2) }�n 

The assertion is that there is an L2 (JRn)-function 7 such that 1 1 7j - 7 1 1 2 --+ 0, ..- . - ..- . ..- . 
l l h1 - f l l 2 --+ 0 and l l f1 - h1 l l 2 --+ 0 as j --+ oo. No assertion is made that ..- . ..- . the sequences fl ( k) and hl ( k) converge for any k as j --+ oo. However , 
by Theorem 2 .7  (completeness of £P-spaces) , there is always a subsequence 
j ( l ) with l = 1 ,  2 , 3, . . .  such 7J (l) (h) and hj (l) ( k) converge for almost every 
k E JRn to 7(k) .  

-
As we show next, the map f t---t f is not just an isometry but it is , in fact , 

a unitary transformation, that is, an invertible isometry. The following 
is an explicit formula for the inverse . 
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5 .5  THEOREM {Inversion formula) 

For f E L2 (JRn) ,  we use definition 5 .4 to define 

fv (x) := f( -x) 
(which amounts to changing i to -i in 5 . 1 ( 1 ) ) . Then 

f = (f) v . 

(Note that the right side is well defined by Theorem 5 .3 . )  

PROOF .  For f E L2 (JRn) the following formula holds : 

( 1 )  

(2) 

{ 9>. (Y - x)f(y) dy = { g;.. (k)] (k)e21r
i (k ,x) dk, (3) 

}�n }�n 

where gA (k) = exp [-.A1r j k j 2] and hence gA (y - x) = ,\ -n/2 exp [-1r jx - y j 2 / ..\] . 
To verify (3) , approximate f by a sequence of functions Ji in L1 (JRn) n 
L2 (JRn) .  For each of these functions formula (3) follows by Fubini's theorem. 
By Theorem 5 .3  (Plancherel 's theorem) we know that Ji --+ f in L2 (JRn) 
implies that ]i --+ f in L2 (JRn) .  Because gA and gA are in L2 (JRn) the 
integrals converge to those in (3) , and thus (3) is established in the general 
case. 

As ,\ � 0 the left side of (3) tends to f(x) in L2 (JRn) by Theorem 2 . 16 
(approximation by C00-functions) .  Since gAf --+ 7 in L2 (JRn) as ,\ --+ 0 
(by dominated convergence) , we know, on account of Theorem 5 .3, that 

..- ..-

(gAj)V --+ (j)v in L2 (JRn) .  Equating the ,\ --+  0 limit of the two sides of (3) 
gives us (2) . • 

5 .6 THE FOURIER TRANSFORM IN LP (JRn) 

The Fourier transform has been defined for L1 (JRn)-functions (with range in 
L00 (JRn) )  and L2 (JRn)-functions (with range in L2 (JRn) ) .  Can it be extended 
to some other £P (JRn)-space so that its range is in some Lq (JRn)-space? 

Let us recall the properties that have been proved so far . 

but the L1 Fourier transform is not an invertible mapping (i .e . , not ev­
ery L00 (JRn)-function is the Fourier transform of some L1 (JRn)-function; the 
constant function is an example) . 
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-
and the Fourier transform is invertible with f = (f) v . 

One way to extend the Fourier transform for p < oo would be to imitate 
the £2 (JRn) construction. The goal would then be to find a constant Cp,q 
such that for every f E £P (JRn) n L1 (JRn) the Fourier transform is in Lq (JRn) 
and satisfies -

l l f l l q < Cp,q l l f l lp · ( 1 )  
Using the continuity argument of Theorem 5 .3 (and the density of LP (JRn) n 
L1 (JRn) in £P (JRn) )  one can then extend the Fourier transform to all of 
LP (JRn) and ( 1 )  will continue to hold . 

The first remark is that q cannot be arbitrary, in fact q must be p' 
(with 1/p + 1/p' = 1 ) . This is a simple consequence of the scaling property -5 . 1 (4) ; if q =/=- p' , then l l f l l q/ l l f l lp can be made arbitrarily large-even for 
f E L1 (JRn) .  The second remark is that counterexamples show that no 
bound of type ( 1 ) can hold when p > 2 ;  see Exercise 9 .  When 1 < p < 2 ,  
however, ( 1 )  is true, as the following theorem (which is usually called the 
Hausdorff-Young inequality) states . 

5 .7 THEOREM {The sharp Hausdorff-Young inequality) 

Let 1 < p < 2 and let f E £P (JRn) n L1 (JRn) .  Then, with 1/p + 1/p' = 1 ,  

( 1 ) 

with 
(2 ) 

Furthermore, equality is achieved in ( 1 ) if and only if f is a Gaussian func­
tion of the form 

f(x) = A exp[- (x, M x) + (B , x ) ] (3) 
with A E C, M any symmetric, real, positive-definite matrix and B any 
vector in en . 

-
Using the construction in Theorem 5 . 3 , together with ( 1 ) , f can be ex-

tended to all of LP (JRn) but, in contrast to the p = 2 case, this map is not 
I invertible, i . e . , the map is not onto all of LP (JRn) .  

REMARK. The proof of Theorem 5 . 7  is lengthy and we shall not attempt to 
give it here. The shortest proof is probably the one in [Lieb, 1990] ; the basic 
idea is similar to that in the proof of Theorem 4 .2 (Young's inequality) ,  but 
the details are more involved . Inequality ( 1 ) was first proved with Cp = 1 
by [Hausdorff] and [W. H. Young] for Fourier series by using the Riesz­
Thorin interpolation theorem (see [Reed-Simon, Vol. 2] ) .  It was extended 
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to Fourier integrals by [Titchmarsh] with Cp = 1 .  [Babenko] derived (2) 
as the sharp constant for p' == 4, 6 , 8 , . . . and [Beckner] proved (2) for all 
1 < p < 2 .  The fact that equality holds in ( 1 )  only when f is a Gaussian 
as in (3) was proved in [Lieb, 1990] . Note that Cp = 1 if p = 1 or p = 2 ,  
in agreement with our errlier results, but in those two cases there are many 
functions that give equality in ( 1 ) ;  indeed all L2 (JRn)-functions give equality 
when p == 2 .  

5 .8  THEOREM {Convolutions) 

Let f E £P (JRn) and g E Lq (JRn) ,  and let 1 + 1/r == 1/p + 1/q .  Suppose 
1 < p, q , r < 2 .  Then ----- -

f * g(k) == f( k) g(k) . ( 1 )  

PROOF .  By Young's inequality, Theorem 4 . 2 ,  f * g E Lr (JRn) .  By Theorem 
5 . 7, f E LP' (JRn) and g E Lq' (JRn) ,  so fg  E Lr' (JRn) by Holder's inequality. 
Since h : =  f * g is in Lr (JRn) ,  h E Lr' (JRn) by Theorem 5 .7 . If both f and 
g are also in L 1 (JR n) ,  then ( 1 )  is true by 5 . 1  ( 8) . The theorem follows by an 
approximation argument that is left to the reader . • 

e The function jx j 2-n on JRn with n > 3 is very important in potential 
theory (Chapter 9) and as the Green's function in Sect . 6 .20 .  Hence, it is 
useful to know its 'Fourier transform' , even though this function is not in 
any LP (JRn) for any p. However , its action in convolution or as a multiplier 
on nice functions can be expressed easily in terms of Fourier transforms. 

5 .9  THEOREM (Fourier transform of l x l a-n) 

Let f be a function in C� (JRn) and let 0 < a < n .  Then, with 
Ca :=  7r-a/2r( a/2) , ( 1 )  

Ca ( l k l -a](k) )v (x) = Cn-a { l x - Y la-n f(y) dy . (2 ) 
}JRn 

-
REMARK. Since f E C� (JRn) ,  the Fourier transform f is a very nice func-
tion; it is in C00 (JRn) (it is analytic , in fact) and , as l k l --+ oo, it , and all its 
derivatives , decay faster than the inverse of any polynomial in k. (The ver­
ification of these two facts is recommended as an exercise using integration -by parts and dominated convergence. ) Therefore, the function l k l -a f(k) is 
in L1 (JRn) ,  and thus it has a Fourier transform. The function on the right 
side of (2) is well defined and is also in C00 (JRn) ,  but it decays , as l x l --+ oo, 
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only as l x la-n ( in general) . Thus, generally speaking, the right side of (2 )  
is not in LP(JRn) for any p < 2 ,  unless a < n/2 and, therefore, it does not 
generally have a well-defined Fourier transform. Nevertheless, (2) is true . 

PROOF. Our starting point is the elementary formula 

-
Since l k l -a f(k) is integrable, we have, by Fubini 's theorem, 

Ca ( l k l -a](k) )v (x) = Ln e2
7ri(k,x) { 1oo 

exp [-7r j k j 2A] Aa/2-1 dA} ] (k) dk 

= 1oo { Ln e2
7ri(k,x) exp [-7r j k j 2 A]](k) dk} Aa/2-1  dA 

(3) 

= 1oo A-n/2_\a/2-1 {Ln exp[-7r jx - y j 2/A] J(y) dy} dA 

= Cn-a { j x - y j -n+a f (y) dy . }JRn 
In the penultimate equation we have used Theorem 5 . 2  and the convolution 
theorem 5 .8 ( 1 ) . The last equation holds by Fubini 's theorem. • 

5 .10  COROLLARY (Extension of 5 .9  to LP (JRn) ) 

lf O < a < n/2 and if f E LP (JRn) with p = 2n/ (n + 2a) , then ] exists ( by 
Theorem 5 .7) . Moreover, with Ca defined in 5 . 9 ( 1 ) ,  the function 

is an L2 (JRn) -function ( by Theorem 4 .3  (HLS inequality) ) and hence has a 
Fourier transform g. -

Our new result is that the relation between g and f is given by 

( 1 ) 

Moreover, 
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REMARK. The case a ==  1 and n > 3 is especially important for potential 
theory (Chapter 9) and for the Green's function of the Laplacian (before 
6 . 20) . The right side of (2) , without Cn-2a , is twice the Coulomb potential 
energy of the 'charge distribution' j ,  9 . 1 (2) . 

PROOF . By Theorem 2 . 16 (approximation by C00-functions) we can find 
a sequence f1 , /2 , . . .  of functions in C�(JRn) such that jJ --+ f strongly in 
LP (JRn) . By Theorem 4 .3 (HLS inequality) the functions g and 

gj :== l x la-n * Jj 

are in L2 (JRn) ;  this follows from Fubini 's theorem and the fact that , for 
0 < a < n, 0 < {3 < n and 0 < a + {3 < n, we have 

( l x l a-n * l x i ,B-n) (y) :=  { i z i a-n iY - z i,6-n dz }�n 
== Cn-a-{3 Ca Cf3 jy j a+f3-n , Ca+{3 Cn-a Cn-{3 

(3) 

which can be verified by a tedious but instructive computation using 5 .9 (3) . 
. ..- .  -

Since /1 --+ j, we have f1 --+ f in Lq (JRn) with q == 2n/ (n - 2a) (by -
Theorem 5 . 7) .  By the HLS inequality gJ --+ g in L2 (JRn) ,  and hence gJ --+ g 
in L2 (JRn) (by Theorem 5 . 3 (Plancherel) ) .  By Theorem 5 .9 , we also know 
that - -

gJ ( k) == Ca I k , -a f j ( k) . 
Our problem is to show that 

- - -
To do this , we pass to a subsequence so that gJ ( k) --+ g( k) and jJ ( k) --+ f ( k) 
pointwise a.e . (by Theorem 2 .7( ii) (completeness of £P-spaces) ) .  Thus, 

for almost every k. This proves ( 1 ) . 
Formula (2) is just an application of Plancherel 's theorem to ( 1 ) ,  together 

with Fubini 's theorem and (3) . • 
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Exercises for 
Chapter 5 

1 .  Prove that the Fourier transform has properties 5 . 1 (2) ,  (3) and (4) . 
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2 .  Prove the Riemann-Lebesgue lemma mentioned in Sect . 5 . 1 ,  i .e . , for f E 
L1 (�n) ,  f (k) � 0 as l k l � oo . 

...., Hint. 5 . 1 (3) is useful . 
3 . Show that the definition of the Fourier transform for functions in £2 (�n) ,  

given in Sect . 5 .4, does not depend on the approximating sequence . 
4. Show that the definition of the Fourier transform for functions in £2 (�n) -

gives rise to a linear map f t---t f. 
5 . Complete the proof of Theorem 5 .8 ,  i .e . , work out the approximation 

argument mentioned at the end of Sect . 5 .8 .  
-6 . For f E Cgo (�n) show that its Fourier transform f is also in coo ( in fact - -

f is analytic) . Show also that 9a (k) :=  l l k l af (k) l is a bounded function 
for each a > 0 . 

- ? .  Verify formula 5 . 10(3) . 
8 . This concerns an example of an extension of Theorem 5 .8 (convolution) 

to the case in which r > 2 . Suppose that f and g are £2 (�n) .  Then we - ----
know that f * g E L00(�n) and fg  E L1 (�n) .  Although f * g may not be 
obviously well defined, show that 5 . 1 (8) holds , nevertheless , in the sense 
of inverse Fourier transforms, i .e . , 

f * g = (f g)v . 

9 . Verify that 5 . 6 ( 1 ) cannot hold when p > 2 by considering Gaussian func­
tions, as in 5 .2 ( 1 ) ,  with ,\ = a + ib and with a > 0 . 


