Chapter 5

The Fourier
Transform

The Fourier transform is a versatile tool in analysis, much loved by ana-
lysts, scientists and engineers. (In fact, in our definition below we use the
engineer’s convention about the placement of 27, which eliminates the an-
noyance of having to multiply integrals by 27.) The virtue of the Fourier
transform is that it converts the operations of differentiation and convolution
into multiplication operations. In particular it allows us to define the rela-
tivistic operators v—A and v—A + m?2 and the space HY/ 2(R™) in Chapter
7. Some references for the Fourier transform are [Hérmander|, [Rudin, 1991],
[Reed—Simon, Vol. 2], [Schwartz| and [Stein—Weiss].

5.1 DEFINITION OF THE L! FOURIER
TRANSFORM

Let f be a function in L1(R™). The Fourier transform of f, denoted by f,
is the function on R" given by

Fiy = [ et f(@)ds (1)

where

(k,z) := Zn: k.x,.
=1
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124 The Fourier Transform

The following algebraic properties are the main motivation for studying
the Fourier transform. They are very easy to prove.

)

The map f +— f is linear in f, (2)
(k) =e 2N F (L) pe R, (3)
orf(k) = A"f(Ak), X >0, (4)

where 73, is the translation operator, (7,f)(z) = f(z — h), and ) is the
scaling operator, (dxf)(x) = f(z/N).

Two other easy to prove facts are

FeL®®Y) and |flloo < If]1, (5)

f is a continuous (and hence measurable) function. (6)

The latter follows from dominated convergence. In fact it is part of the
Riemann—Lebesgue lemma, which also states that f(k) — 0 as |k| — oo

(see Exercise 2). Note that ||/f||oo equals || f||1 whenever f is any nonnegative
function; in that case

Floo = F0) = [ 7= 1l

Recall from Sect. 2.15 that the convolution of two functions f and g,
both in L(R™), is given by

(f*9)(z) = . flz —y)g(y)dy. (7)
By Fubini’s theorem f * g € L'(R™), and also by Fubini’s theorem

(Frot) = [ ) [ fa =) dyds

o /Rn e—zﬂi(kay)g(y) o 6—27ri(k,(m—y))f(x —_ y) da’: dy (8)

The following is an important example.




Sections 5.1-5.2 125

5.2 THEOREM (Fourier transform of a Gaussian)

For A > 0, denote by g) the Gaussian function on R™ given by
gr(z) = exp[~mA|z|’] (1)

for x € R™. Then
(k) = A2 exp[—|k[2/\].

REMARK. This is a special case of Exercise 4.4.

PROOF. By 5.1(4) it suffices to consider A = 1. Since

g1(z) = [ [ expl-m(z:)?],
i=1
it suffices to consider n = 1. By definition (since g; € L!(R))

G1(k) = /R e~ 2=k exp|—mz?®| dz = g1 (k) f(k),

where

f(k) = /Rexp[—w(a: + ik)?] d. (2)

A simple limiting argument using the dominated convergence theorem allows
us to differentiate (2) under the integral sign as many times as we like.
Therefore f € C*°(R) and

(k) = —omi /R (z + ik) exp|—(z + ik)?] d

iy d B N2
—z/R dxexp[ m(x + ik)“| dzx

= i exp|[—m(z + ik)?] ‘oo =0,

i.e., f(k) is constant. But f(0) = [, exp[—mz?]dz = 1. H

® The Fourier transform can be defined for functions for which 5.1(1) does

not ma:ye sense. In particular, it is important for quantum mechanics to
define f for f € L?(R™). One route to this definition goes via the Schwartz
space S (which we will not discuss here). The method below uses only
Theorem 2.16 (approximation by C°°-functions). We begin by considering
functions in L!'(R™) N L?(R"™), which are dense in L?(R™).
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5.3 THEOREM (Plancherel’s theorem)

If f € LY(R™) N L2(R™), then f is in L2(R™) and the following formula of
Plancherel holds:
1£1l2 = 11 £1l2- (1)

The map f — ? has a unique extension to a continuous, linear map from
L?(R™) into L?(R™) which is an isometry, i.e., Plancherel’s formula (1)
holds for this extension. We continue to denote this map by f l—>? (even if
f & LYR™)).

If f and g are in L*(R™), then Parseval’s formula holds,

Fa)

(f.9)= | T@g@)de= [ Fk)3k)dk=(7.3) (2)

]R'n,

PROOF. For f € L}(R™)NL2(R"), the function f(k) is bounded, by 5.1(5),
and hence

| 170 expl-enlk?] b ©

is defined. Since f € L'(R™), the function f(z)f(y)exp[—em|k|?] of three
variables is in L!(R3"). Using Fubini’s theorem and Theorem 5.2 we can
express (3) as

f(x)f(y)e® ™k (@=v) exp[—enk?] dz dy dk
R3n

- [, oo |- Foy sy @

Using Theorem 2.16 (approximation by C'°°-functions)

ot [ exp [T ”2] Fw)dy — f()

£

in L?(R") as ¢ — 0, and hence (using Fubini’s theorem again) (3) tends to
Jon I f (z)|? dz. This shows that (3) is uniformly bounded in € and the mono-

tone convergence theorem therefore shows that ? € L?(R™) with

1£ll2 = 11£l2- (5)

Now let f be in L2(R™) but not in L}*(R™) N L2(R™). Since L!(R™) N
L?(R") is dense in L?(R™), there exists a sequence f’ € L'(R") N Lz(]R")
such that | — 7]}z — 0. By (5) [/ — F"lla = |9 — /™[l2 and hence J
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is a Cauchy sequence in L?(R™) that converges to some function in L2(R"™),
which we call f It is obvious from (5) that f does not depend on the choice
of the sequence f?. Moreover,

I£ll2 = lim [|F7]l2 = lim || f7]l2 = [|£]]2-
]—)OO ]—)OO

The continuity (in L?(R™)) and the linearity of this map is left to the reader.
Relation (2) follows from (1) by polarization, i.e., the identity

(f,9) = %{Hf +gl3 =il f +gll3 — (1 = DIFIZ - (1 = D)llalZ}-

Applying (1) to each of these four norms yields (2). |

5.4 DEFINITION OF THE L? FOURIER
TRANSFORM

For each f in L2(R"), the L2(R")-function f defined by the limit given in
Theorem 5.3 is called the Fourier transform of f.
Theorem 5.3 is remarkable because it states that for any given f €

L?(R™) one can compute its Fourier transform f by using any L!(R"™)-
approximating sequence whatsoever and one always obtains, as an L?(R")

limit, a function /f which is independent of the approximation. Here are two
examples with the index 7 =1,2,3,...:

Fitk) = /| e f@as, (1)
z|<j

W) = [ cos(laf? /) expl-af/sle2"4)  (z) da @)

The assertion is that there is an L2(R™)-function f such that || f7 — f|js — 0,
IR — F|l2 — 0 and ||f# — 7|, — 0 as j — oo. No assertion is made that
the sequences }‘\J(k) and /ﬁj(k) converge for any k as j — oo. However,
by Theorem 2.7 (completeness of Lp-spaces) there is always a subsequence
j(l) with I =1,2,3,... such ?j(l)( h) and i ) (k) converge for almost every
ke R™ to f(k).

As we show next, the map f — /f\ is not just an isometry but it is, in fact,

a unitary transformation, that is, an invertible isometry. The following
is an explicit formula for the inverse.
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5.5 THEOREM (Inversion formula)

For f € L?(R™), we use definition 5.4 to define

)

Y (2) = f(-) (1)
(which amounts to changing i to —i in 5.1(1)). Then
r=@ (2)

(Note that the right side is well defined by Theorem 5.3.)

PROOF. For f € L?(R™) the following formula holds:
| a-arwdy= [ a®@FwEE ak ®

where gy (k) = exp[—Ar|k|?] and hence Gx(y — z) = A2 exp[—7|z — y|?/ .
To verify (3), approximate f by a sequence of functions f’ in L!'(R™) N
L?(R™). For each of these functions formula (3) follows by Fubini’s theorem.
By Theorem 5.3 (Plancherel’s theorem) we know that f/ — f in L?(R™)
implies that f/ — f in L?(R™). Because g and gy are in L?(R"™) the
integrals converge to those in (3), and thus (3) is established in the general
case.

As A — 0 the left side of (3) tends to f(z) in L?(R™) by Theorem 2.16
(approximation by C°°-functions). Since gA? — /f in L2(R®) as A — 0
(by dominated convergence), we know, on account of Theorem 5.3, that
(g,\/f)v — (f)V in L?(R™). Equating the A — 0 limit of the two sides of (3)

gives us (2). H

5.6 THE FOURIER TRANSFORM IN LP(R")

The Fourier transform has been defined for L!(R™)-functions (with range in
L°°(R™)) and L?(R"™)-functions (with range in L?(R")). Can it be extended
to some other LP(R™)-space so that its range is in some L%(R")-space?

Let us recall the properties that have been proved so far.
feL'RM = FeL®R") with [fle<IIfl1, (A)

but the L' Fourier transform is not an invertible mapping (i.e., not ev-
ery L°°(R")-function is the Fourier transform of some L!(R")-function; the
constant function is an example).

feLPRY) = feL*®RY) with [fll2= ]/l (B)
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and the Fourier transform is invertible with f = (/f)v

One way to extend the Fourier transform for p < oo would be to imitate
the L?(R™) construction. The goal would then be to find a constant Cp
such that for every f € LP(R™) N L}(R"™) the Fourier transform is in L(R")

and satisfies

I7llg < Cr.qll fllp- (1)

Using the continuity argument of Theorem 5.3 (and the density of LP(R™)N
LY(R™) in LP(R™)) one can then extend the Fourier transform to all of
LP(R™) and (1) will continue to hold.

The first remark is that ¢ cannot be arbitrary, in fact ¢ must be
(with 1/p+ 1/p/ =1). This is a simple consequence of the scaling property
5.1(4); if ¢ # p/, then ||?||q/ |f|lp can be made arbitrarily large—even for
f € LY(R™). The second remark is that counterexamples show that no
bound of type (1) can hold when p > 2; see Exercise 9. When 1 < p < 2,
however, (1) is true, as the following theorem (which is usually called the
Hausdorff—-Young inequality) states.

5.7 THEOREM (The sharp Hausdorff-Young inequality)

Let 1 <p <2 andlet f € LP(R*) N LY(R™). Then, with 1/p+1/p =1,

”?”p’ < C;'Hpr (1)

with ,
02 = [po(e)) 7). ®

Furthermore, equality is achieved in (1) if and only if f is a Gaussian func-

tion of the form
f(z) = Aexp[—(z, Mz) + (B, z)] (3)

with A € C, M any symmetric, real, positive-definite matrixz and B any
vector in C",

Using the construction in Theorem 5.3, together with (1), ? can be ez-
tended to all of LP(R™) but, in contrast to the p = 2 case, this map is not
invertible, i.e., the map is not onto all of LP (R™).

REMARK. The proof of Theorem 5.7 is lengthy and we shall not attempt to
give it here. The shortest proof is probably the one in [Lieb, 1990]; the basic
idea is similar to that in the proof of Theorem 4.2 (Young’s inequality), but
the details are more involved. Inequality (1) was first proved with Cp, =1
by [Hausdorff] and [W. H. Young] for Fourier series by using the Riesz—
Thorin interpolation theorem (see [Reed—Simon, Vol. 2]). It was extended
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to Fourier integrals by [Titchmarsh] with C, = 1. [Babenko] derived (2)
as the sharp constant for p’ = 4,6,8,... and [Beckner| proved (2) for all
1 < p < 2. The fact that equality holds in (1) only when f is a Gaussian
as in (3) was proved in [Lieb, 1990]. Note that C, = 1if p=1or p = 2,
in agreement with our eerlier results, but in those two cases there are many
functions that give equality in (1); indeed all L?(IR™)-functions give equality
when p = 2.

5.8 THEOREM (Convolutions)

Let f € LP(R™) and g € LI(R™), and let 1 + 1/r = 1/p+ 1/q. Suppose
1<pq,r<2 Then

—_—

f*g(k) = f(k)G(k). (1)

PROOF. By Young’s inequality, Theorem 4.2, fxg € L"(R"). By Theorem
5.7, f € LP (R™) and § € LY (R"), so f§ € L™ (R™) by Hélder’s inequality.
Since h := f * g is in L"(R"), h € L (R™) by Theorem 5.7. If both f and
g are also in L'(R™), then (1) is true by 5.1(8). The theorem follows by an
approximation argument that is left to the reader. |

@® The function |z|2~" on R™ with n > 3 is very important in potential
theory (Chapter 9) and as the Green’s function in Sect. 6.20. Hence, it is
useful to know its ‘Fourier transform’, even though this function is not in
any LP(R™) for any p. However, its action in convolution or as a multiplier
on nice functions can be expressed easily in terms of Fourier transforms.

5.9 THEOREM (Fourier transform of |x|*~"™)

Let f be a function in C°(R™) and let 0 < o« < n. Then, with
Co i= T (a)2), (1)

(k2T (1)) (@) = en_a / 7~y (y) dy | 2)

n

REMARK. Since f € C°(R"™), the Fourier transform T is a very nice func-
tion; it is in C'°°(R™) (it is analytic, in fact) and, as |k| — oo, it, and all its
derivatives, decay faster than the inverse of any polynomial in k. (The ver-
ification of these two facts is recommended as an exercise using integration
by parts and dominated convergence.) Therefore, the function |k|~*f (k) is
in L1(R™), and thus it has a Fourier transform. The function on the right
side of (2) is well defined and is also in C'*°(R™), but it decays, as |z| — oo,
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only as |z|*™™ (in general). Thus, generally speaking, the right side of (2)
is not in LP(R™) for any p < 2, unless « < n/2 and, therefore, it does not
generally have a well-defined Fourier transform. Nevertheless, (2) is true.

PROOF. Our starting point is the elementary formula
calk|® = /O " expl—m k]2 A*/2-1 ), (3)
Since |k|=*f(k) is integrable, we have, by Fubini’s theorem,
cal T (@) = [ @t [™ explonfhPANer2-ax ) k) d
= /0 oo{ / 2T expl—m|k|*N]f (k) dk} A¥/27L g\
= [Taeri ] [ explenlo = oA )y ) ax

= Cn—a/ |z —y| 7" f(y) dy.

In the penultimate equation we have used Theorem 5.2 and the convolution
theorem 5.8(1). The last equation holds by Fubini’s theorem. |

5.10 COROLLARY (Extension of 5.9 to LP(R"))

If0<a<n/2and if f € LP(R™) with p = 2n/(n + 2a), then /f exists (by
Theorem 5.7). Moreover, with ¢, defined in 5.9(1), the function

g :=Cp—o|z|¥ " * f

is an L?(R™)-function (by Theorem 4.3 (HLS inequality)) and hence has a
Fourier transform 3.

Our new result is that the relation between g and /f 1S given by
calk|~¥f (k) = g(k). (1)

Moreover,

e [ K72 F )P Ak = cnza / F@) W)l -y dedy. (2)
R n JRn




132 The Fourier Transform

REMARK. The case a =1 and n > 3 is especially important for potential
theory (Chapter 9) and for the Green’s function of the Laplacian (before
6.20). The right side of (2), without c,_24, is twice the Coulomb potential
energy of the ‘charge distribution’ f, 9.1(2).

PROOF. By Theorem 2.16 (approximation by C'°°-functions) we can find
a sequence f1, f2,... of functions in C°(R™) such that f’ — f strongly in
LP(R"™). By Theorem 4.3 (HLS inequality) the functions g and

g = x| 7

are in L?(R™); this follows from Fubini’s theorem and the fact that, for
O<a<n 0<fB<nand 0<a+ B <n, wehave

(J2[*7™ |27 (y) == | [2|* "y — 2" dz
/” (3)

Cn—a—pCa CB Iyla—f—ﬁ—n
bl
Ca+pB Cn—a Cn—p

which can be verified by a tedious but instructive computation using 5.9(3).

Since f# — f, we have f/ — f in LI(R") with ¢ = 2n/(n — 2a) (by
Theorem 5.7). By the HLS inequality ¢ — g in L?(R"), and hence ¢/ — g
in L?(R™) (by Theorem 5.3 (Plancherel)). By Theorem 5.9, we also know
that

9/ (k) = calk|~* (k).
Our problem is to show that

3(k) = calk|~*F(K).

To do this, we pass to a subsequence so that 9/3 (k) — 9(k) and ]/"\J(k) — f(k)
pointwise a.e. (by Theorem 2.7(ii) (completeness of LP-spaces)). Thus,

G(k) = limy o0 cal k|~ f7 (k) = cal k|~ lim; o0 f7 (k) = calk| T (k)

for almost every k. This proves (1).

Formula (2) is just an application of Plancherel’s theorem to (1), together
with Fubini’s theorem and (3). |
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Exercises for
Chapter 5

1. Prove that the Fourier transform has properties 5.1(2), (3) and (4).

2. Prove theARiemann—Lebesgue lemma mentioned in Sect. 5.1, i.e., for f €
LYR™), f(k) — 0 as |k| — oco.

» Hint. 5.1(3) is useful.

3. Show that the definition of the Fourier transform for functions in L%(R"),
given in Sect. 5.4, does not depend on the approximating sequence.

4. Show that the definition of the Fourier transform for functions in L?(R")

gives rise to a linear map f — f.

5. Complete the proof of Theorem 5.8, i.e., work out the approximation
argument mentioned at the end of Sect. 5.8.

6. For f € C°(R™) show that its Fourier transform f is also in C*° (in fact
7 is analytic). Show also that gq(k) := | |k|®f(k)| is a bounded function
for each a > 0.

*7. Verify formula 5.10(3).

8. This concerns an example of an extension of Theorem 5.8 (convolution)
to the case in which r > 2. Suppose that f and g are L?(R"). Then we
know that f+g € L®°(R") and f§ € L}(R™). Although f * g may not be
obviously well defined, show that 5.1(8) holds, nevertheless, in the sense
of inverse Fourier transforms, i.e.,

fxg=(f39) .

9. Verify that 5.6(1) cannot hold when p > 2 by considering Gaussian func-
tions, as in 5.2(1), with A = a + ¢b and with a > 0.




