
The Fourier 

Tr ansform 

Chapter 5 

The Fourier transform is a versatile tool in analysis , much loved by ana
lysts , scientists and engineers . (In fact , in our definition below we use the 
engineer's convention about the placement of 21r, which eliminates the an
noyance of having to multiply integrals by 21r. )  The virtue of the Fourier 
transform is that it converts the operations of differentiation and convolution 
into multiplication operations. In particular it allows us to define the rela
tivistic operators FfS. and J-� + m2 and the space H112 (JRn) in Chapter 
7. Some references for the Fourier transform are [Hormander] , [Rudin, 1991] , 
[Reed-Simon, Vol. 2] , [Schwartz] and [Stein-Weiss] . 

5 . 1  DEFINITION OF THE L1 FOURIER 
TRANSFORM 

-
Let f be a function in £1 (JRn) . The Fourier transform of f, denoted by f, 
is the function on JRn given by 

where 

] (k) = r e-21n(k ,x) f (x) dx }JRn 

n 
(k , x) : = L kzXz . 

z=l 

( 1 )  

-
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The following algebraic properties are the main motivation for studying 
the Fourier transform. They are very easy to prove. 

-
The map f t---t f is linear in j, 
-;;:}(k) = e-21ri(k,h)f(k) , h E JRn ' 

(2) 

(3) 

(4) 

where Th is the translation operator , ( rhf) ( x) = f ( x - h) , and 6.\ is the 
scaling operator, (6.\f) (x) = f(xj..\) . 

Two other easy to prove facts are 

..-
! is a continuous (and hence measurable) function. (6) 

The latter follows from dominated convergence. In fact it is part of the -
Riemann-Lebesgue lemma, which also states that f(k) --+ 0 as l k l --+ oo -
(see Exercise 2) . Note that 1 1 / l l oo equals l l f l l 1 whenever f is any nonnegative 
function; in that case 

I I J i i oo = ](0) = J J = I I J I I 1 · 

Recall from Sect . 2 . 1 5  that the convolution of two functions f and g , 
both in L1 (JRn) ,  is given by 

(f * g) (x) = r f(x - y)g(y) dy. }JRn 

By Fubini 's theorem f * g E L1 (JRn) ,  and also by Fubini 's theorem 

(J:g)(k) = r e-21ri (k ,x) r f(x - y)g(y) dy dx 
}JRn }JRn 

(7) 

= r e-21ri(k,y)g (y) r e-2?ri(k, (x-y) ) j (x - y) dx dy (8) 
}JRn }JRn 
..-

= f( k)g(k) . 

The following is an important example . 
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5.2 THEOREM {Fourier transform of a Gaussian) 

For ,\ > 0, denote by 9).. the Gaussian function on JRn given by 

for x E JRn . Then 

REMARK. This is a special case of Exercise 4.4 . 

PROOF. By 5 . 1 (4) it suffices to consider ,\ =  1 .  Since 

n 
91 (x) = IT exp [-7r(xi ) 2] ,  

i=1 
it suffices to consider n = 1 .  By definition (since 91 E £1 (JR) ) 

91 (k) = l e-21ri (x ,k) exp [-1rx2] dx = 91 (k)j (k) ,  

where 
f(k) = l exp [-1r(x + ik)2] dx . 
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( 1 )  

(2) 

A simple limiting argument using the dominated convergence theorem allows 
us to differentiate (2) under the integral sign as many times as we like. 
Therefore f E C00 (JR) and 

�� (k) = -27ri l (x + ik) exp [-1r(x + ik)2] dx 

= i l d� exp [-1r(x + ik) 2] dx 
00 = i exp [-1r(x + ik)2] = 0, 
- oo 

i .e. , f(k) is constant . But / (0) = fiR exp [-1rx2] dx = 1 .  • 

e The Fourier transform can be defined for functions for which 5 . 1 ( 1 )  does 
not make sense. In particular , it is important for quantum mechanics to -
define f for f E L2 (JRn) .  One route to this definition goes via the Schwartz 
space S (which we will not discuss here) . The method below uses only 
Theorem 2 . 16 (approximation by C00-functions) .  We begin by considering 
functions in £1 (JRn ) n £2 (JRn) ' which are dense in £2 (JRn ) . 
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5 .3 THEOREM {Plancherel's theorem) 

If f E L1 (JRn) n L2 (JRn) ,  then f is in L2 (JRn) and the following formula of 
Plancherel holds: -

1 1 / 1 1 2 = 1 1 / 1 1 2 · ( 1 )  
-

The map f t---t f has a unique extension to a continuous, linear map from 
L2 (JRn) into L2 (JRn) which is an isometry, i . e . , Plancherel 's formula ( 1 )  -
holds for this extension. We continue to denote this map by f t---t f ( even if 
J t/: £1 (JRn) ) . 

If f and g are in L2 (JRn) ,  then Parseval 's formula holds, 

(f, g ) := r f (x)g (x) dx = r ](k)9(k) dk = (} , g) . (2) }�n }�n 

-
PROOF. For f E L1 (JRn) nL2 (JRn) ,  the function f(k) is bounded, by 5 . 1 (5) , 
and hence 

(3) 

is defined . Since f E L1 (JRn) ,  the function f(x)f (y) exp [-c7r l k l 2] of three 
variables is in L1 (JR3n) .  Using Fubini 's theorem and Theorem 5 .2 we can 
express ( 3) as 

r j (x )f (y ) e21ri(k , (x-y) ) exp [ -c1rk2] dx dy dk 
}�3n 

= c-n/2 exp - f(x)f (y) dx dy . 1 [ 1r(x _ y) 2 ] _ 

�2n c 

Using Theorem 2 . 16 (approximation by C00-functions) 

(4) 

in L2 (JRn) as c --+ 0, and hence (using Fubini's theorem again) (3) tends to 
J�n lf (x) l 2 dx . This shows that (3) is uniformly bounded in c and the mono--
tone convergence theorem therefore shows that f E L2 (JRn) with 

-
1 1 ! 1 1 2 = 1 1 ! 1 1 2 · (5) 

Now let f be in L2 (JRn) but not in L1 (JRn) n L2 (JRn) .  Since L1 (JRn) n 
£2 (JRn) is dense in £2 (JRn) ,  there exists a sequence fj E £1 (JRn) n £2 (JRn) 
such that I I ! - fJ l l 2 --+ 0 .  By (5) l l fj - ]m l l 2 = l l fj - fm l l 2 and hence f

j 
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is a Cauchy sequence in £2 (JRn) that converges to some function in £2 (JRn) ,  - -
which we call f . It is obvious from (5) that f does not depend on the choice 
of the sequence f j . Moreover , 

The continuity (in £2 (JRn) )  and the linearity of this map is left to the reader . 
Relation (2) follows from ( 1 )  by polarization, i .e . , the identity 

1 (!, g) =  2 { I I ! + 9 1 1 � - i l l ! + ig l l � - ( 1 - i) l l f l l � - ( 1 - i) l l g i iD · 

Applying ( 1 )  to each of these four norms yields (2) . 

5.4 DEFINITION OF THE L2 FOURIER 
TRANSFORM 

• 

-
For each f in L2 (JRn) ,  the L2 (JRn)-function f defined by the limit given in 
Theorem 5 .3 is called the Fourier transform of f . 

Theorem 5 .3 is remarkable because it states that for any given f E -
L2 (JRn) one can compute its Fourier transform f by using any L1 (JRn)-
approximating sequence whatsoever and one always obtains , as an L2 (JRn) -
limit , a function f which is independent of the approximation. Here are two 
examples with the index j = 1 ,  2 , 3, . . .  : 

jJ (k) = f e-21ri (k,x) f(x) dx , ( 1 )  Jlx i <J 
hJ (k) = { cos( l x l 2 jj ) exp [- lx l 2 jj] e-21ri (k,x) f(x) dx . (2) }�n 

The assertion is that there is an L2 (JRn)-function 7 such that 1 1 7j - 7 1 1 2 --+ 0, ..- . - ..- . ..- . 
l l h1 - f l l 2 --+ 0 and l l f1 - h1 l l 2 --+ 0 as j --+ oo. No assertion is made that ..- . ..- . the sequences fl ( k) and hl ( k) converge for any k as j --+ oo. However , 
by Theorem 2 .7  (completeness of £P-spaces) , there is always a subsequence 
j ( l ) with l = 1 ,  2 , 3, . . .  such 7J (l) (h) and hj (l) ( k) converge for almost every 
k E JRn to 7(k) .  

-
As we show next, the map f t---t f is not just an isometry but it is , in fact , 

a unitary transformation, that is, an invertible isometry. The following 
is an explicit formula for the inverse . 



128 The Fourier Transform 

5 .5  THEOREM {Inversion formula) 

For f E L2 (JRn) ,  we use definition 5 .4 to define 

fv (x) := f( -x) 
(which amounts to changing i to -i in 5 . 1 ( 1 ) ) . Then 

f = (f) v . 

(Note that the right side is well defined by Theorem 5 .3 . )  

PROOF .  For f E L2 (JRn) the following formula holds : 

( 1 )  

(2) 

{ 9>. (Y - x)f(y) dy = { g;.. (k)] (k)e21r
i (k ,x) dk, (3) 

}�n }�n 

where gA (k) = exp [-.A1r j k j 2] and hence gA (y - x) = ,\ -n/2 exp [-1r jx - y j 2 / ..\] . 
To verify (3) , approximate f by a sequence of functions Ji in L1 (JRn) n 
L2 (JRn) .  For each of these functions formula (3) follows by Fubini's theorem. 
By Theorem 5 .3  (Plancherel 's theorem) we know that Ji --+ f in L2 (JRn) 
implies that ]i --+ f in L2 (JRn) .  Because gA and gA are in L2 (JRn) the 
integrals converge to those in (3) , and thus (3) is established in the general 
case. 

As ,\ � 0 the left side of (3) tends to f(x) in L2 (JRn) by Theorem 2 . 16 
(approximation by C00-functions) .  Since gAf --+ 7 in L2 (JRn) as ,\ --+ 0 
(by dominated convergence) , we know, on account of Theorem 5 .3, that 

..- ..-

(gAj)V --+ (j)v in L2 (JRn) .  Equating the ,\ --+  0 limit of the two sides of (3) 
gives us (2) . • 

5 .6 THE FOURIER TRANSFORM IN LP (JRn) 

The Fourier transform has been defined for L1 (JRn)-functions (with range in 
L00 (JRn) )  and L2 (JRn)-functions (with range in L2 (JRn) ) .  Can it be extended 
to some other £P (JRn)-space so that its range is in some Lq (JRn)-space? 

Let us recall the properties that have been proved so far . 

but the L1 Fourier transform is not an invertible mapping (i .e . , not ev
ery L00 (JRn)-function is the Fourier transform of some L1 (JRn)-function; the 
constant function is an example) . 
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-
and the Fourier transform is invertible with f = (f) v . 

One way to extend the Fourier transform for p < oo would be to imitate 
the £2 (JRn) construction. The goal would then be to find a constant Cp,q 
such that for every f E £P (JRn) n L1 (JRn) the Fourier transform is in Lq (JRn) 
and satisfies -

l l f l l q < Cp,q l l f l lp · ( 1 )  
Using the continuity argument of Theorem 5 .3 (and the density of LP (JRn) n 
L1 (JRn) in £P (JRn) )  one can then extend the Fourier transform to all of 
LP (JRn) and ( 1 )  will continue to hold . 

The first remark is that q cannot be arbitrary, in fact q must be p' 
(with 1/p + 1/p' = 1 ) . This is a simple consequence of the scaling property -5 . 1 (4) ; if q =/=- p' , then l l f l l q/ l l f l lp can be made arbitrarily large-even for 
f E L1 (JRn) .  The second remark is that counterexamples show that no 
bound of type ( 1 ) can hold when p > 2 ;  see Exercise 9 .  When 1 < p < 2 ,  
however, ( 1 )  is true, as the following theorem (which is usually called the 
Hausdorff-Young inequality) states . 

5 .7 THEOREM {The sharp Hausdorff-Young inequality) 

Let 1 < p < 2 and let f E £P (JRn) n L1 (JRn) .  Then, with 1/p + 1/p' = 1 ,  

( 1 ) 

with 
(2 ) 

Furthermore, equality is achieved in ( 1 ) if and only if f is a Gaussian func
tion of the form 

f(x) = A exp[- (x, M x) + (B , x ) ] (3) 
with A E C, M any symmetric, real, positive-definite matrix and B any 
vector in en . 

-
Using the construction in Theorem 5 . 3 , together with ( 1 ) , f can be ex-

tended to all of LP (JRn) but, in contrast to the p = 2 case, this map is not 
I invertible, i . e . , the map is not onto all of LP (JRn) .  

REMARK. The proof of Theorem 5 . 7  is lengthy and we shall not attempt to 
give it here. The shortest proof is probably the one in [Lieb, 1990] ; the basic 
idea is similar to that in the proof of Theorem 4 .2 (Young's inequality) ,  but 
the details are more involved . Inequality ( 1 ) was first proved with Cp = 1 
by [Hausdorff] and [W. H. Young] for Fourier series by using the Riesz
Thorin interpolation theorem (see [Reed-Simon, Vol. 2] ) .  It was extended 
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to Fourier integrals by [Titchmarsh] with Cp = 1 .  [Babenko] derived (2) 
as the sharp constant for p' == 4, 6 , 8 , . . . and [Beckner] proved (2) for all 
1 < p < 2 .  The fact that equality holds in ( 1 )  only when f is a Gaussian 
as in (3) was proved in [Lieb, 1990] . Note that Cp = 1 if p = 1 or p = 2 ,  
in agreement with our errlier results, but in those two cases there are many 
functions that give equality in ( 1 ) ;  indeed all L2 (JRn)-functions give equality 
when p == 2 .  

5 .8  THEOREM {Convolutions) 

Let f E £P (JRn) and g E Lq (JRn) ,  and let 1 + 1/r == 1/p + 1/q .  Suppose 
1 < p, q , r < 2 .  Then ----- -

f * g(k) == f( k) g(k) . ( 1 )  

PROOF .  By Young's inequality, Theorem 4 . 2 ,  f * g E Lr (JRn) .  By Theorem 
5 . 7, f E LP' (JRn) and g E Lq' (JRn) ,  so fg  E Lr' (JRn) by Holder's inequality. 
Since h : =  f * g is in Lr (JRn) ,  h E Lr' (JRn) by Theorem 5 .7 . If both f and 
g are also in L 1 (JR n) ,  then ( 1 )  is true by 5 . 1  ( 8) . The theorem follows by an 
approximation argument that is left to the reader . • 

e The function jx j 2-n on JRn with n > 3 is very important in potential 
theory (Chapter 9) and as the Green's function in Sect . 6 .20 .  Hence, it is 
useful to know its 'Fourier transform' , even though this function is not in 
any LP (JRn) for any p. However , its action in convolution or as a multiplier 
on nice functions can be expressed easily in terms of Fourier transforms. 

5 .9  THEOREM (Fourier transform of l x l a-n) 

Let f be a function in C� (JRn) and let 0 < a < n .  Then, with 
Ca :=  7r-a/2r( a/2) , ( 1 )  

Ca ( l k l -a](k) )v (x) = Cn-a { l x - Y la-n f(y) dy . (2 ) 
}JRn 

-
REMARK. Since f E C� (JRn) ,  the Fourier transform f is a very nice func-
tion; it is in C00 (JRn) (it is analytic , in fact) and , as l k l --+ oo, it , and all its 
derivatives , decay faster than the inverse of any polynomial in k. (The ver
ification of these two facts is recommended as an exercise using integration -by parts and dominated convergence. ) Therefore, the function l k l -a f(k) is 
in L1 (JRn) ,  and thus it has a Fourier transform. The function on the right 
side of (2) is well defined and is also in C00 (JRn) ,  but it decays , as l x l --+ oo, 
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only as l x la-n ( in general) . Thus, generally speaking, the right side of (2 )  
is not in LP(JRn) for any p < 2 ,  unless a < n/2 and, therefore, it does not 
generally have a well-defined Fourier transform. Nevertheless, (2) is true . 

PROOF. Our starting point is the elementary formula 

-
Since l k l -a f(k) is integrable, we have, by Fubini 's theorem, 

Ca ( l k l -a](k) )v (x) = Ln e2
7ri(k,x) { 1oo 

exp [-7r j k j 2A] Aa/2-1 dA} ] (k) dk 

= 1oo { Ln e2
7ri(k,x) exp [-7r j k j 2 A]](k) dk} Aa/2-1  dA 

(3) 

= 1oo A-n/2_\a/2-1 {Ln exp[-7r jx - y j 2/A] J(y) dy} dA 

= Cn-a { j x - y j -n+a f (y) dy . }JRn 
In the penultimate equation we have used Theorem 5 . 2  and the convolution 
theorem 5 .8 ( 1 ) . The last equation holds by Fubini 's theorem. • 

5 .10  COROLLARY (Extension of 5 .9  to LP (JRn) ) 

lf O < a < n/2 and if f E LP (JRn) with p = 2n/ (n + 2a) , then ] exists ( by 
Theorem 5 .7) . Moreover, with Ca defined in 5 . 9 ( 1 ) ,  the function 

is an L2 (JRn) -function ( by Theorem 4 .3  (HLS inequality) ) and hence has a 
Fourier transform g. -

Our new result is that the relation between g and f is given by 

( 1 ) 

Moreover, 
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REMARK. The case a ==  1 and n > 3 is especially important for potential 
theory (Chapter 9) and for the Green's function of the Laplacian (before 
6 . 20) . The right side of (2) , without Cn-2a , is twice the Coulomb potential 
energy of the 'charge distribution' j ,  9 . 1 (2) . 

PROOF . By Theorem 2 . 16 (approximation by C00-functions) we can find 
a sequence f1 , /2 , . . .  of functions in C�(JRn) such that jJ --+ f strongly in 
LP (JRn) . By Theorem 4 .3 (HLS inequality) the functions g and 

gj :== l x la-n * Jj 

are in L2 (JRn) ;  this follows from Fubini 's theorem and the fact that , for 
0 < a < n, 0 < {3 < n and 0 < a + {3 < n, we have 

( l x l a-n * l x i ,B-n) (y) :=  { i z i a-n iY - z i,6-n dz }�n 
== Cn-a-{3 Ca Cf3 jy j a+f3-n , Ca+{3 Cn-a Cn-{3 

(3) 

which can be verified by a tedious but instructive computation using 5 .9 (3) . 
. ..- .  -

Since /1 --+ j, we have f1 --+ f in Lq (JRn) with q == 2n/ (n - 2a) (by -
Theorem 5 . 7) .  By the HLS inequality gJ --+ g in L2 (JRn) ,  and hence gJ --+ g 
in L2 (JRn) (by Theorem 5 . 3 (Plancherel) ) .  By Theorem 5 .9 , we also know 
that - -

gJ ( k) == Ca I k , -a f j ( k) . 
Our problem is to show that 

- - -
To do this , we pass to a subsequence so that gJ ( k) --+ g( k) and jJ ( k) --+ f ( k) 
pointwise a.e . (by Theorem 2 .7( ii) (completeness of £P-spaces) ) .  Thus, 

for almost every k. This proves ( 1 ) . 
Formula (2) is just an application of Plancherel 's theorem to ( 1 ) ,  together 

with Fubini 's theorem and (3) . • 
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Exercises for 
Chapter 5 

1 .  Prove that the Fourier transform has properties 5 . 1 (2) ,  (3) and (4) . 

133 

2 .  Prove the Riemann-Lebesgue lemma mentioned in Sect . 5 . 1 ,  i .e . , for f E 
L1 (�n) ,  f (k) � 0 as l k l � oo . 

...., Hint. 5 . 1 (3) is useful . 
3 . Show that the definition of the Fourier transform for functions in £2 (�n) ,  

given in Sect . 5 .4, does not depend on the approximating sequence . 
4. Show that the definition of the Fourier transform for functions in £2 (�n) -

gives rise to a linear map f t---t f. 
5 . Complete the proof of Theorem 5 .8 ,  i .e . , work out the approximation 

argument mentioned at the end of Sect . 5 .8 .  
-6 . For f E Cgo (�n) show that its Fourier transform f is also in coo ( in fact - -

f is analytic) . Show also that 9a (k) :=  l l k l af (k) l is a bounded function 
for each a > 0 . 

- ? .  Verify formula 5 . 10(3) . 
8 . This concerns an example of an extension of Theorem 5 .8 (convolution) 

to the case in which r > 2 . Suppose that f and g are £2 (�n) .  Then we - ----
know that f * g E L00(�n) and fg  E L1 (�n) .  Although f * g may not be 
obviously well defined, show that 5 . 1 (8) holds , nevertheless , in the sense 
of inverse Fourier transforms, i .e . , 

f * g = (f g)v . 

9 . Verify that 5 . 6 ( 1 ) cannot hold when p > 2 by considering Gaussian func
tions, as in 5 .2 ( 1 ) ,  with ,\ = a + ib and with a > 0 . 


