MAT 1001 / 458 : Real Analysis II
 Assignment 9, due March 29, 2022

1. Prove the Hausdorff-Young inequality

$$
\|\hat{f}\|_{q} \leq\|f\|_{p}, \quad 1 \leq p \leq 2
$$

for a suitable value of q (depending on p). Here, \hat{f} is the Fourier transform of f on \mathbb{R}^{n}.
2. (Folland, Exercise 8.16.) By the Riemann-Lebesgue lemma, the Fourier transform $\mathcal{F}: f \mapsto \hat{f}$ defines a bounded linear transformation from $L^{1}\left(\mathbb{R}^{n}\right)$ to the space

$$
C_{0}\left(\mathbb{R}^{n}\right)=\left\{f: \mathbb{R}^{n} \rightarrow \mathbb{C} \mid f \text { continuous and } \lim _{|x| \rightarrow \infty} f(x)=0\right\}
$$

with the topology of uniform convergence. Convince yourself that $C_{0}\left(\mathbb{R}^{n}\right)$ is complete.
Let $n=1, t>0$, and consider the function $f_{t}=\mathcal{X}_{[-1,1]} * \mathcal{X}_{[-t, t]}$.
(a) Show that $f_{t} \in C_{0}$ and $\left\|f_{t}\right\|_{\infty} \leq 2$. (Please make a sketch.)
(b) But $\lim _{t \rightarrow \infty}\left\|\hat{f}_{t}\right\|_{1}=\infty$, and likewise for \check{f}_{t}.
(c) Argue that $\mathcal{F}: L^{1} \rightarrow C_{0}$ cannot be surjective.

3. Heisenberg's uncertainty principle

Let f be a complex-valued Schwarz function on \mathbb{R}. If $\|f\|_{L^{2}(\mathbb{R})}=1$, show that

$$
\left(\int_{\mathbb{R}} x^{2}|f(x)|^{2} d x\right)\left(\int_{\mathbb{R}} k^{2}|\hat{f}(k)|^{2} d k\right) \geq \frac{1}{16 \pi^{2}}
$$

What are the equality cases?
4. Solve the heat equation

$$
\partial_{t} u=\Delta u, \quad\left(x \in \mathbb{R}^{n}, t>0\right)
$$

with initial values $u(x, 0)=f(x)$ for $x \in \mathbb{R}^{n}$, by deriving a differential equation for the Fourier transform $\hat{u}(k, t)=\int e^{-2 \pi i k \cdot x} u(x, t) d x$. Here, $\Delta u=\sum_{j} \partial_{x_{j}}^{2} u$ is the Laplacian, and $f \in \mathcal{S}$ (the Schwarz space).
Don't forget to transform back ...
5. (Fractional integration; Exercise 2.6.61 in Folland.)

If f is continuous on $[0, \infty)$, for $\alpha>0$ and $x \geq 0$ let

$$
I_{\alpha} f(x)=\frac{1}{\Gamma(\alpha)} \int_{0}^{x}(x-t)^{\alpha-1} f(t) d t
$$

The map $f \mapsto I_{\alpha} f$ is linear and preserves positivity.
(a) Semigroup property. Show that $I_{\alpha+\beta} f=I_{\alpha}\left(I_{\beta} f\right)$ for all $\alpha, \beta>0$.
(b) If n is a positive integer, show that $I_{n}(f)$ is an n-th order antiderivative of f, i.e., f can be recovered from $I_{n} f$ by differentiating n times.

(Nothing to hand in)

6. Von Neumann's alternating projection theorem. Let P_{1} and P_{2} be orthogonal projections onto closed subspaces V_{1} and V_{2} of a Hilbert space H, respectively, and let P be the orthogonal projection onto the intersection $V=V_{1} \cap V_{2}$. You will show that $\left(P_{1} P_{2}\right)^{n} x$ converges to $P x$ for all $x \in H$. (Please make a sketch!)
(a) Show that $P_{1} P_{2} x=x$ if and only if $x \in V$. (Consider $\left\|P_{1} P_{2} x\right\|^{2}$.)
(b) Prove that $\left\|x-P_{1} P_{2} x\right\|^{2} \leq 2\left(\|x\|^{2}-\left\|P_{1} P_{2} x\right\|^{2}\right)$ for all $x \in H$.
(c) Kakutani's lemma. Let $x_{n}=\left(P_{1} P_{2}\right)^{n} x$. Show that $\lim \left\|x_{n}-x_{n+1}\right\|=0$.
(d) Conclude that $\lim \left\|x_{n}-P x\right\|=0$.

Remarks. See
[1] Netanyun and Solmon, MAA Monthly 113(7): p.644-648, 2006 (p.645)
[2] Bauschke, Matouskova, and Reich, Nonl. Anal. 46: p.715-738, 2004 (p.721)
The alternating projection theorem can be viewed as a special case of Trotter's formula:

$$
e^{-t(A+B)}=\lim \left(e^{-\frac{t}{n} A} e^{-\frac{t}{n} B}\right)^{n}, \quad(t>0)
$$

for any pair of (possibly unbounded, non-commuting) positive semidefinite self-adjoint operators A, B on H. Here, $S: t \mapsto e^{-t A}$ is the semigroup generated by A (defined by solving the linear equation $\dot{x}+A x=0$ in H.)
In the special case of a projection, the associated semigroup is $S(t):=P$ for $t>0$ and $S(0)=I$, and the semigroup property $S(s+t)=S(s) S(t)$ just says that $P^{2}=P$.

