MAT 1001 / 458 : Real Analysis II Assignment 9, due March 29, 2022

1. Prove the Hausdorff-Young inequality

 $||\hat{f}||_q \le ||f||_p, \quad 1 \le p \le 2$

for a suitable value of q (depending on p). Here, \hat{f} is the Fourier transform of f on \mathbb{R}^n .

2. (*Folland, Exercise* 8.16.) By the Riemann-Lebesgue lemma, the Fourier transform $\mathcal{F}: f \mapsto \hat{f}$ defines a bounded linear transformation from $L^1(\mathbb{R}^n)$ to the space

$$C_0(\mathbb{R}^n) = \left\{ f : \mathbb{R}^n \to \mathbb{C} \mid f \text{ continuous and } \lim_{|x| \to \infty} f(x) = 0 \right\}$$

with the topology of uniform convergence. Convince yourself that $C_0(\mathbb{R}^n)$ is complete. Let n = 1, t > 0, and consider the function $f_t = \mathcal{X}_{[-1,1]} * \mathcal{X}_{[-t,t]}$.

- (a) Show that $f_t \in C_0$ and $||f_t||_{\infty} \leq 2$. (Please make a sketch.)
- (b) But $\lim_{t\to\infty} ||\hat{f}_t||_1 = \infty$, and likewise for \check{f}_t .
- (c) Argue that $\mathcal{F}: L^1 \to C_0$ cannot be surjective.

3. Heisenberg's uncertainty principle

Let f be a complex-valued Schwarz function on \mathbb{R} . If $||f||_{L^2(\mathbb{R})} = 1$, show that

$$\left(\int_{\mathbb{R}} x^2 |f(x)|^2 dx\right) \left(\int_{\mathbb{R}} k^2 |\hat{f}(k)|^2 dk\right) \ge \frac{1}{16\pi^2}$$

What are the equality cases?

4. Solve the *heat equation*

$$\partial_t u = \Delta u, \quad (x \in \mathbb{R}^n, t > 0)$$

with initial values u(x,0) = f(x) for $x \in \mathbb{R}^n$, by deriving a differential equation for the Fourier transform $\hat{u}(k,t) = \int e^{-2\pi i k \cdot x} u(x,t) dx$. Here, $\Delta u = \sum_j \partial_{x_j}^2 u$ is the Laplacian, and $f \in S$ (the Schwarz space).

Don't forget to transform back ...

5. (*Fractional integration; Exercise* 2.6.61 *in Folland.*) If f is continuous on $[0, \infty)$, for $\alpha > 0$ and $x \ge 0$ let

$$I_{\alpha}f(x) = \frac{1}{\Gamma(\alpha)} \int_0^x (x-t)^{\alpha-1} f(t) dt \,.$$

The map $f \mapsto I_{\alpha} f$ is linear and preserves positivity.

- (a) Semigroup property. Show that $I_{\alpha+\beta}f = I_{\alpha}(I_{\beta}f)$ for all $\alpha, \beta > 0$.
- (b) If n is a positive integer, show that $I_n(f)$ is an n-th order antiderivative of f, i.e., f can be recovered from $I_n f$ by differentiating n times.

(Nothing to hand in)

- 6. Von Neumann's alternating projection theorem. Let P_1 and P_2 be orthogonal projections onto closed subspaces V_1 and V_2 of a Hilbert space H, respectively, and let P be the orthogonal projection onto the intersection $V = V_1 \cap V_2$. You will show that $(P_1P_2)^n x$ converges to Px for all $x \in H$. (Please make a sketch!)
 - (a) Show that $P_1P_2x = x$ if and only if $x \in V$. (Consider $||P_1P_2x||^2$.)
 - (b) Prove that $||x P_1P_2x||^2 \le 2(||x||^2 ||P_1P_2x||^2)$ for all $x \in H$.
 - (c) Kakutani's lemma. Let $x_n = (P_1 P_2)^n x$. Show that $\lim ||x_n x_{n+1}|| = 0$.
 - (d) Conclude that $\lim ||x_n Px|| = 0$.

Remarks. See

- [1] Netanyun and Solmon, MAA Monthly **113**(7): p.644-648, 2006 (p.645)
- [2] Bauschke, Matouskova, and Reich, Nonl. Anal. 46: p.715-738, 2004 (p.721)

The alternating projection theorem can be viewed as a special case of Trotter's formula:

$$e^{-t(A+B)} = \lim \left(e^{-\frac{t}{n}A} e^{-\frac{t}{n}B} \right)^n$$
, $(t > 0)$

for any pair of (possibly unbounded, non-commuting) positive semidefinite self-adjoint operators A, B on H. Here, $S: t \mapsto e^{-tA}$ is the semigroup generated by A (defined by solving the linear equation $\dot{x} + Ax = 0$ in H.)

In the special case of a projection, the associated semigroup is S(t) := P for t > 0 and S(0) = I, and the semigroup property S(s+t) = S(s)S(t) just says that $P^2 = P$.