MAT 1001 / 458 : Real Analysis II Assignment 8, due March 22, 2022

1. (Stein & Shakarchi, Exercise 4.32)

Prove that the operator $T: L^2([0,1]) \to L^2([0,1])$ defined by (Tf)(x) = xf(x) is bounded and self-adjoint, but not compact. Moreover, T has no eigenvectors.

2. (Stein & Shakarchi, Exercise 4.34)

Let H be a Hilbert space (assume for simplicity that H is separable). Prove the following variants of the spectral theorem:

- (a) Simultaneous diagonalization of commuting operators. If A_1 and A_1 are two compact self-adjoint operators on H with $A_1A_2 = A_2A_1$, show that there exists an orthonormal basis for H consisting of eigenvectors for both A_1 and A_2 .
- (b) Spectral theorm for normal operators. A linear operator T is called **normal**, if it commutes with its adjoint $(TT^{\dagger} = T^{\dagger}T)$. Prove that if T is normal and compact, then it can be diagonalized.
- (c) Spectral theorem for unitary operators. Recall that an operator U is **unitary** if $UU^{\dagger} = I$. Prove that if U is unitary, and $U = \gamma I T$ where T is compact, then U can be diagonalized.

3. Hilbert-Schmidt operators

Let K(x, y) be a complex-valued function in $L^2(\mathbb{R}^2)$. Set

$$Tf(x) = \int_{\mathbb{R}} K(x, y) f(y) \, dy$$
.

- (a) Show that $f \mapsto Tf$ defines a bounded linear operator on $L^2(\mathbb{R})$.
- (b) Moreover, T is compact.
- (c) Find a formula for its adjoint, T^{\dagger} .

4. *The unit sphere is weakly dense in the unit ball (Folland 5.63).* Let *H* be an infinite-dimensional Hilbert space. Prove that ...

- (a) \dots every orthonormal sequence in H converges weakly to zero;
- (b) ... for every a with $||a|| \le 1$ there exists a sequence $(x_n)_{n\ge 1}$ with

$$||x_n|| = 1$$
 (for all $n \ge 1$), $x_n \rightharpoonup a$ (as $n \to \infty$).

5. Stereographic projection of S^1 (*Exercise 4.7.9 in Stein & Shakarchi*)

Let $H_1 = L^2([-\pi, \pi])$ be the Hilbert space of functions $F(e^{i\theta})$ on the unit circle with inner product

$$\langle F, G \rangle = \frac{1}{2\pi} F(e^{i\theta}) \overline{G(e^{i\theta})} \, d\theta$$

Let H_2 be the space $L^2(\mathbb{R})$ with the usual inner product.

(a) Using the mapping $x \mapsto \frac{i-x}{i+x}$ of \mathbb{R} to the unit circle, show that the corresponding transformation $U: F \mapsto f$, with

$$f(x) = \frac{1}{\sqrt{\pi}(i+x)} F\left(\frac{i-x}{i+x}\right)$$

defines a unitary mapping of H_1 to H_2 . What is its inverse?

(b) Conclude that

$$\left\{\frac{1}{\sqrt{\pi}(i+x)} \left(\frac{i-x}{i+x}\right)^n\right\}_{n\in\mathbb{Z}}$$

is an orthonormal basis of $L^2(\mathbb{R})$.

(Not to be handed in.)

6. Commuting projections (Stein & Shakarchi, Exercise 4.7.13)

Let H be a Hilbert space, let P_1 and P_2 be a pair of orthogonal projections onto closed subspaces S_1 and S_2 , respectively.

Prove that $P := P_1P_2$ is an orthogonal projection, if and only if $P_1P_2 = P_2P_1$. In that case, what is the range of P?