## MAT 1001 / 458 : Real Analysis II <br> Assignment 8, due March 22, 2022

1. (Stein \& Shakarchi, Exercise 4.32)

Prove that the operator $T: L^{2}([0,1]) \rightarrow L^{2}([0,1])$ defined by $(T f)(x)=x f(x)$ is bounded and self-adjoint, but not compact. Moreover, $T$ has no eigenvectors.
2. (Stein \& Shakarchi, Exercise 4.34)

Let $H$ be a Hilbert space (assume for simplicity that $H$ is separable). Prove the following variants of the spectral theorem:
(a) Simultaneous diagonalization of commmuting operators. If $A_{1}$ and $A_{1}$ are two compact self-adjoint operators on $H$ with $A_{1} A_{2}=A_{2} A_{1}$, show that there exists an orthonormal basis for $H$ consisting of eigenvectors for both $A_{1}$ and $A_{2}$.
(b) Spectral theorm for normal operators. A linear operator $T$ is called normal, if it commutes with its adjoint $\left(T T^{\dagger}=T^{\dagger} T\right)$. Prove that if $T$ is normal and compact, then it can be diagonalized.
(c) Spectral theorem for unitary operators. Recall that an operator $U$ is unitary if $U U^{\dagger}=$ $I$. Prove that if $U$ is unitary, and $U=\gamma I-T$ where $T$ is compact, then $U$ can be diagonalized.
3. Hilbert-Schmidt operators

Let $K(x, y)$ be a complex-valued function in $L^{2}\left(\mathbb{R}^{2}\right)$. Set

$$
T f(x)=\int_{\mathbb{R}} K(x, y) f(y) d y
$$

(a) Show that $f \mapsto T f$ defines a bounded linear operator on $L^{2}(\mathbb{R})$.
(b) Moreover, $T$ is compact.
(c) Find a formula for its adjoint, $T^{\dagger}$.
4. The unit sphere is weakly dense in the unit ball (Folland 5.63).

Let $H$ be an infinite-dimensional Hilbert space. Prove that ...
(a) ...every orthonormal sequence in $H$ converges weakly to zero;
(b) ...for every $a$ with $\|a\| \leq 1$ there exists a sequence $\left(x_{n}\right)_{n \geq 1}$ with

$$
\left\|x_{n}\right\|=1 \quad(\text { for all } n \geq 1), \quad x_{n} \rightharpoonup a \quad(\text { as } n \rightarrow \infty)
$$

5. Stereographic projection of $S^{1}$ (Exercise 4.7.9 in Stein \& Shakarchi)

Let $H_{1}=L^{2}([-\pi, \pi])$ be the Hilbert space of functions $F\left(e^{i \theta}\right)$ on the unit circle with inner product

$$
\langle F, G\rangle=\frac{1}{2 \pi} F\left(e^{i \theta}\right) \overline{G\left(e^{i \theta}\right)} d \theta
$$

Let $H_{2}$ be the space $L^{2}(\mathbb{R})$ with the usual inner product.
(a) Using the mapping $x \mapsto \frac{i-x}{i+x}$ of $\mathbb{R}$ to the unit circle, show that the corresponding transformation $U: F \mapsto f$, with

$$
f(x)=\frac{1}{\sqrt{\pi}(i+x)} F\left(\frac{i-x}{i+x}\right)
$$

defines a unitary mapping of $H_{1}$ to $H_{2}$. What is its inverse?
(b) Conclude that

$$
\left\{\frac{1}{\sqrt{\pi}(i+x)}\left(\frac{i-x}{i+x}\right)^{n}\right\}_{n \in \mathbb{Z}}
$$

is an orthonormal basis of $L^{2}(\mathbb{R})$.

## (Not to be handed in.)

6. Commuting projections (Stein \& Shakarchi, Exercise 4.7.13)

Let $H$ be a Hilbert space, let $P_{1}$ and $P_{2}$ be a pair of orthogonal projections onto closed subspaces $S_{1}$ and $S_{2}$, respectively.
Prove that $P:=P_{1} P_{2}$ is an orthogonal projection, if and only if $P_{1} P_{2}=P_{2} P_{1}$. In that case, what is the range of $P$ ?

