MAT 1001 / 458 : Real Analysis II
 Assignment 6, due March 1, 2022

1. Nowhere monotone continuous functions

Prove that there exists a continuous function on the unit interval that is not monotone on any subinterval of positive length.
Hint: Given a closed subinterval $I \subset[0,1]$ of positive length, prove that the set

$$
A_{I}=\left\{f \in \mathcal{C}([0,1]):\left.f\right|_{I} \text { is monotone }\right\}
$$

is closed and contains no open balls, and then apply the Baire Category Theorem. You may use that $\mathcal{C}([0,1])$, the space of continuous function with the sup norm, is a Banach space, and that the piecewise linear functions form a dense subspace.
2. Let X be an infinite-dimensional Banach space.
(a) If $V \subset X$ is a finite-dimensional subspace, show that V is closed.
(b) Hamel bases. Let $\mathcal{B} \subset X$ be a maximal set of linearly independent vectors. It is a theorem of Linear Algebra that every element $x \in X$ can be uniquely represented as a finite linear combination

$$
x=\sum_{j=1}^{n} \alpha_{j} b_{j}
$$

for some nonnegative integer n, vectors $b_{1}, \ldots, b_{n} \in \mathcal{B}$, and coefficients $\alpha_{1}, \ldots, \alpha_{n}$. Prove that \mathcal{B} is uncountable.
Hint: Use the Baire category theorem and Part (a).
3. Mazur's theorem on strongly convergent convex combinations (see Lieb-Loss Thm. 2.13) Let $\left(x_{n}\right)_{n \geq 1}$ be a sequence in a Banach space X, and $a \in X$. Suppose that $x_{n} \rightharpoonup a$ (weakly). Prove that there exist coefficients $\lambda_{n j}$ and a sequence N_{n} with

$$
\lambda_{n j} \geq 0\left(1 \leq j \leq N_{n}\right), \quad \lambda_{n j}=0\left(j>N_{n}\right), \quad \sum_{j} \lambda_{n j}=1 \quad(\text { for each } n \geq 1),
$$

such that $y_{n}:=\sum_{j} \lambda_{n j} x_{j} \rightarrow a$ (strongly).
Hint: Consider the closed convex hull of $\left\{x_{n}: n \geq 1\right\}$ in X.
4. L^{p}-spaces with $0<p<1$ (Folland 6.16). On a measure space (X, μ), let

$$
L^{p}:=\left\{f:\left.X \rightarrow \mathbb{C}\left|\int\right| f\right|^{p} d \mu<\infty\right\} / \mu \text {-a.e. }, \quad(0<p<1)
$$

(identifying, as usual, functions that agree μ-almost everywhere). Show that

$$
\rho(f, g):=\int|f-g|^{p} d \mu
$$

defines a metric that makes L^{p} into a complete topological vector space. (Verify the triangle inequality, the continuity of the vector space operations, and completeness.)
5. Gamma and Beta. The Gamma-function is defined by $\Gamma(x):=\int_{0}^{\infty} t^{x-1} e^{-t} d t$ for $x>0$. Establish the following properties.
(a) Functional equation

$$
\Gamma(x+1)=x \Gamma(x) \quad(x>0) .
$$

(b) Interpolation of the factorials

$$
\Gamma(n)=(n-1)!\quad(n=1,2, \ldots)
$$

(c) Log-convexity

$$
\Gamma((1-s) x+s y) \leq(\Gamma(x))^{1-s}(\Gamma(y))^{s} \quad(x, y>0 ; s \in(0,1))
$$

(d) The Beta-integral (Folland 2.60)

$$
\mathrm{B}(x, y):=\frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)}=\int_{0}^{1} t^{x-1}(1-t)^{y-1} d t \quad(x, y>0) .
$$

(e) $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi} . \quad$ (Take $x=y=\frac{1}{2}$ in Part (d), and change variables $t=\sin ^{2} \theta$.)

The Bohr-Mollerup theorem says that Γ is uniquely determined by Properties (b) and (c). One consequence:
(f) Legendre's duplication formula

$$
\Gamma(x)=\frac{2^{x-1}}{\sqrt{\pi}} \Gamma\left(\frac{x}{2}\right) \Gamma\left(\frac{x+1}{2}\right), \quad \text { for } x>0
$$

(Check that both sides of the equation are log-concave, satisfy the functional equation, and agree at $x=1$.)
6. Polar coordinates on \mathbb{R}^{n}. Read the construction of the uniform measure on the unit sphere in Folland, Section 2.7. The measure of a Borel set $A \subset S^{n-1}$ is defined by

$$
\sigma(A):=n \mu\left(\left\{x=r u \in \mathbb{R}^{d} \mid r \in(0,1), u \in A\right\}\right),
$$

where μ is Lebesgue measure. Note that σ inherits the rotation invariance of μ. The factor n arises from the behavior of Lebesgue measure under dilation (namely, $\mu(r C)=$ $r^{n} \mu(C)$).
The key formula is Theorem 2.49 of Folland,

$$
\int_{\mathbb{R}^{n}} f(x) d x=\int_{0}^{\infty} \int_{S^{n-1}} f(r u) r^{n-1} d \sigma(u) d r
$$

which shows that Lebesgue measure equals the product measure $d \mu=r^{n-1} d r \times d \sigma$. From here, the measure of the unit sphere and unit ball can be inferred by evaluating the integral of the Gaussian $f(x)=e^{-|x|^{2}}$ in two ways (by polar coordinates / Fubini). The result is

$$
\sigma\left(S^{n-1}\right)=\frac{2 \pi^{\frac{n}{2}}}{\Gamma\left(\frac{n}{2}\right)}=n \omega_{n}, \quad \omega_{n}=\mu\left(\text { unit ball in } \mathbb{R}^{n}\right)=\frac{\pi^{\frac{n}{2}}}{\Gamma\left(\frac{n}{2}+1\right)}
$$

(Nothing to hand-in.)

