
MAT 1001 / 458 : Real Analysis II
Assignment 6, due March 1, 2022

1. Nowhere monotone continuous functions
Prove that there exists a continuous function on the unit interval that is not monotone on
any subinterval of positive length.

Hint: Given a closed subinterval I ⊂ [0, 1] of positive length, prove that the set

AI =
{
f ∈ C([0, 1]) : f

∣∣
I

is monotone
}

is closed and contains no open balls, and then apply the Baire Category Theorem. You
may use that C([0, 1]), the space of continuous function with the sup norm, is a Banach
space, and that the piecewise linear functions form a dense subspace.

2. Let X be an infinite-dimensional Banach space.

(a) If V ⊂ X is a finite-dimensional subspace, show that V is closed.

(b) Hamel bases. Let B ⊂ X be a maximal set of linearly independent vectors. It is a
theorem of Linear Algebra that every element x ∈ X can be uniquely represented
as a finite linear combination

x =
n∑

j=1

αjbj

for some nonnegative integer n, vectors b1, . . . , bn ∈ B, and coefficients α1, . . . , αn.
Prove that B is uncountable.
Hint: Use the Baire category theorem and Part (a).

3. Mazur’s theorem on strongly convergent convex combinations (see Lieb-Loss Thm. 2.13)
Let (xn)n≥1 be a sequence in a Banach space X , and a ∈ X . Suppose that xn ⇀ a
(weakly). Prove that there exist coefficients λnj and a sequence Nn with

λnj ≥ 0 (1 ≤ j ≤ Nn) , λnj = 0 (j > Nn) ,
∑
j

λnj = 1 (for each n ≥ 1) ,

such that yn :=
∑

j λnjxj → a (strongly).

Hint: Consider the closed convex hull of {xn : n ≥ 1} in X .

4. Lp-spaces with 0 < p < 1 (Folland 6.16). On a measure space (X,µ), let

Lp :=
{
f : X → C

∣∣∣ ∫ |f |p dµ <∞}/µ-a.e. , (0 < p < 1) ,

(identifying, as usual, functions that agree µ-almost everywhere). Show that

ρ(f, g) :=

∫
|f − g|p dµ

defines a metric that makes Lp into a complete topological vector space. (Verify the
triangle inequality, the continuity of the vector space operations, and completeness.)
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5. Gamma and Beta. The Gamma-function is defined by Γ(x) :=

∫ ∞
0

tx−1e−t dt for

x > 0. Establish the following properties.

(a) Functional equation

Γ(x+ 1) = xΓ(x) (x > 0) .

(b) Interpolation of the factorials

Γ(n) = (n−1)! (n = 1, 2, . . .)

(c) Log-convexity

Γ
(
(1−s)x+ sy

)
≤
(
Γ(x)

)1−s(
Γ(y)

)s
(x, y > 0; s ∈ (0, 1)) .

(d) The Beta-integral (Folland 2.60)

B(x, y) :=
Γ(x)Γ(y)

Γ(x+ y)
=

∫ 1

0

tx−1(1− t)y−1 dt (x, y > 0) .

(e) Γ
(
1
2

)
=
√
π. (Take x=y= 1

2
in Part (d), and change variables t = sin2 θ.)

The Bohr-Mollerup theorem says that Γ is uniquely determined by Properties (b) and (c).
One consequence:

(f) Legendre’s duplication formula

Γ(x) =
2x−1
√
π

Γ
(
x
2

)
Γ
(
x+1
2

)
, for x > 0

(Check that both sides of the equation are log-concave, satisfy the functional equa-
tion, and agree at x = 1.)

6. Polar coordinates on Rn. Read the construction of the uniform measure on the unit
sphere in Folland, Section 2.7. The measure of a Borel set A ⊂ Sn−1 is defined by

σ(A) := nµ
({
x = ru ∈ Rd

∣∣ r ∈ (0, 1), u ∈ A
})

,

where µ is Lebesgue measure. Note that σ inherits the rotation invariance of µ. The
factor n arises from the behavior of Lebesgue measure under dilation (namely, µ(rC) =
rnµ(C)).

The key formula is Theorem 2.49 of Folland,∫
Rn

f(x) dx =

∫ ∞
0

∫
Sn−1

f(ru)rn−1 dσ(u) dr ,

which shows that Lebesgue measure equals the product measure dµ = rn−1 dr × dσ.
From here, the measure of the unit sphere and unit ball can be inferred by evaluating the
integral of the Gaussian f(x) = e−|x|

2 in two ways (by polar coordinates / Fubini). The
result is

σ(Sn−1) =
2π

n
2

Γ(n
2
)

= nωn , ωn = µ(unit ball in Rn) =
π

n
2

Γ(n
2

+ 1)
.

(Nothing to hand-in.)
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