
MAT 1001 / 458 : Real Analysis II
Assignment 4, due February 8, 2022

1. Consider the space `∞ of bounded sequences (xn)n≥1, with the sup-norm. Find the closure
of the subspace

F :=
{
x ∈ `∞

∣∣ xn = 0 for all but finitely many n
}
.

2. Quotient space (Folland 5.1.12). Let (E, ‖ · ‖) be a normed vector space, and V ⊂ E a
proper closed subspace. Define the quotient space E/V by the equivalence relation

x ∼ y ⇔ x− y ∈ V .

Elements of X/V are equivalence classes [x] := x+ V .

(a) Check that
‖x+ V ‖E/V := inf

v∈V
‖x+ v‖X

defines a norm on the quotient space X/V . (Feel free to drop the subscripts.)

(b) Prove that the canonical projection map π : E → E/V has norm 1.

(c) If E is complete, then so is E/V . (Hint: Use absolutely convergent series.)

3. Interior of closed convex sets (Brézis Ex. 1.7). LetC be a closed convex subset of a normed
vector space. Assume that C contains a non-empty open subset. Prove that C is the closure
of its interior,

C = intC .

Hint: Argue that for any pair of points x0 ∈ C, x1 ∈ intC, the convex combinations
xt = (1− t)x0 + tx1 lie in the interior of C for all t ∈ (0, 1).

4. Recall that a topological space is called separable if it contains a countable dense subset.

(a) Briefly explain why a normed vector space X is separable, if and only if there is a
sequence (xn)n≥1 in X that spans a dense subspace.

(b) X∗ separable⇒X separable (Folland Problem 5.2.25). If X is a Banach space and
its dual space X∗ is separable, prove that X is separable. (Hint: Let (fn)n≥1 be a dense
sequence in X∗. For each n, choose xn with ||xn|| = 1 and |fn(xn)| ≥ 1

2
||fn||. Then

apply Part (a) and a separation argument.)

(c) X separable 6⇒ X∗ separable. Show that L1(R) is separable, but its dual space
L∞(R) is not. (Hint: What is the distance between two indicator functions?)
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5. Krein-Milman theorem (Brézis Problem 1)
Let X be a normed vector space, and let K ⊂ X be a non-empty compact convex subset.
You will prove that K equals the closed convex hull of its extreme points.

We say that a ∈ K is an extreme point of K, if it cannot be represented as a non-trivial
convex combination in K, that is, if for every x, y ∈ K and 0 < t < 1

(1− t)x+ ty = a =⇒ x = y = a ,

More generally, A ⊂ K is an extreme subset if it is closed, non-empty, and for every
x, y ∈ K and 0 < t < 1

(1− t)x+ ty ∈ A =⇒ x, y ∈ A .

(a) Consider the collection E of extreme subsets of K, with the partial order given by
containment, i.e., A ≤ B ⇔ A ⊃ B. Prove that E has a maximal element, A∗.
Hint: Appeal to Cantor’s intersection theorem.

(b) Existence of extreme points
If A is an extreme subset of K, and φ ∈ X∗ is a bounded linear functional, show that{

x ∈ A
∣∣∣ φ(x) = max

y∈A
φ(y)

}
is an extreme subset. Conclude that A∗ = {a} for some extreme point a.
Hint: Hahn-Banach

The convex hull of a subset C ⊂ X consist of all finite convex combinations of points in C,

convC =

{∑
i∈I

tixi

∣∣∣ I ⊂ N finite; xi ∈ C and ti ≥ 0 ∀i ∈ I;
∑
i∈I

ti = 1

}
.

The topological closure convC is called the closed convex hull of C.

(c) Let E be the set of extreme points of K. Prove that K = convE.
Hint: One inclusion is easy; for the other one, use Hahn-Banach.

6. Read the complex Hahn-Banach theorem and its proof (Folland Theorem 5.7). Also read
Proposition 5.5, on real vs. complex linear functionals. (Nothing to hand in.)
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