MAT 1001 / 458 : Real Analysis II
 Assignment 3, due February 1, 2022

1. Tail sum formula. Let $f \in L^{p}$, where $1 \leq p<\infty$, and let $\lambda_{f}(t):=\mu(\{x:|f(x)|>t\}$ denote its distribution function.
Prove that

$$
\|f\|_{p}^{p}=\int_{0}^{\infty} p t^{p-1} \lambda_{f}(t) d t
$$

2. The scale of L^{p}-spaces. Let (X, μ) be a measure space.
(a) For $1 \leq p<q \leq \infty$, show that $L^{p} \cap L^{q}$ increases with p (and decreases with q), while $L^{p}+L^{q}$ decreases with p (and increases with q).
(b) Prove that $L^{1} \cap L^{\infty} \subset L^{p} \subset L^{1}+L^{\infty}$ for all $1<p<\infty$.
(c) Furthermore, $L^{1} \cap L^{\infty}$ is dense in L^{p} for all $1 \leq p<\infty$.
(d) However, $L^{1} \cap L^{\infty}$ is not dense in L^{∞} unless μ is finite.
3. (Best constants in Young's inequality). In Assignments 1 and 2, you established Young's inequality with constant $C=1$.
(a) If $p, q, r>1$, show that Young's inequality is strict unless one of the three functions f, g, h vanishes a.e.. (Hint: Revisit the Hölder estimate from Assignment 1.)
(b) Brascamp-Lieb [1976] and Beckner [1976] proved that for $p, q, r>1$, the best-possible constant satisfies $C_{p, q, r, n}<1$, and is attained by suitable centered Gaussians $f=$ $e^{-a|x|^{2}}, g=e^{-b|x|^{2}}$ (and $h=e^{-c|x|^{2}}$). Taking this result for granted, compute the value of the sharp constant $C_{p, q, r, n}$ by optimizing over $a, b($ and $c)>0$.
4. Additive \Rightarrow linear? Suppose a function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies

$$
f(x+y)=f(x)+f(y), \quad x, y \in \mathbb{R}
$$

(a) Assuming that f is continuous, prove that it is linear, i.e., there exists $\alpha \in \mathbb{R}$ such that

$$
f(x)=\alpha x, \quad x \in \mathbb{R}
$$

Hint: Consider the value of f at rational points.
(b) Establish the same conclusion under the assumption that f is just measurable.

Hint: Convolve $e^{i f}$ with a smooth bump function ϕ. The convolution is smooth!
(c) Can you construct a (non-measurable) function f that is additive but not linear? How?
5. L ${ }^{p}$-bound on the maximal operator. Consider the Hardy-Littlewood maximal operator, defined on locally integrable functions $f: \mathbb{R}^{d} \rightarrow \mathbb{C}$ by

$$
H f(x):=\sup _{r>0} \frac{1}{m\left(\left(B_{r}(x)\right)\right.} \int_{B_{r}(x)}|f(y)| d y
$$

Here, m denotes Lebesgue measure, and $B_{r}(x)$ is the ball of radius r centered at x. By the Maximal Theorem (Theorem 3.27 in Folland),

$$
m\left(\left\{x \in \mathbb{R}^{d}: H f(x)>\alpha\right\}\right) \leq \frac{A}{\alpha}\|f\|_{1} \quad \text { for all } \alpha>0, f \in L^{1}
$$

holds with constant $A=3^{d}$. You are asked to find constants C_{p} for $p>1$ such that

$$
\begin{equation*}
\|H f\|_{p} \leq C_{p}\|f\|_{p} \quad \text { for all } f \in L^{p} \tag{1}
\end{equation*}
$$

(a) Argue that $\|H f\|_{\infty} \leq\|f\|_{\infty}$ for all $f \in L^{\infty}$, i.e., $C_{\infty}=1$.

Let now $f \in L^{p}$ for some $p \in(1, \infty)$. For $a>0$ to be chosen below, we split $f \in L^{p}$ into two layers, $f=g_{a}+h_{a}$, where

$$
g_{a}:=\operatorname{sign}(f) \min \{|f|, a\}, \quad h_{a}:=\operatorname{sign}(f)(|f|-a)_{+} .
$$

We showed in class that g_{a} is bounded and h_{a} is integrable, with

$$
\left\|g_{a}\right\|_{\infty} \leq a, \quad\left\|h_{a}\right\|_{1}=\int_{a}^{\infty} m(\{x:|f(x)|>t) d t
$$

(b) Sublinearity. Show that for any $a, t>0$,

$$
m(\{|H f|>2 t\}) \leq m\left(\left\{\left|H g_{a}\right|>t\right\}\right)+m\left(\left\{\left|H h_{a}\right|>t\right\}\right) .
$$

(c) Therefore,

$$
m(\{|H f|>2 a\}) \leq \frac{C_{1}}{a} \int_{a}^{\infty} m(\{x:|f(x)|>s \mid) d s, \quad a>0 .
$$

(d) Insert this estimate into the tail sum formula to bound $\|H f\|_{p}^{p}$ in terms of $\|f\|_{p}^{p}$. What value do you obtain for the constant C_{p} in Eq. (1)?
6. Real vs. complex interpolation. In Problem 5, you proved a special case of the Marcinkiewicz interpolation theorem. Read the general statement, Theorem 6.28 in Folland, and compare it with the Riesz-Thorin interpolation theorem (Theorem 6.27). Try find at least 3 important differences. (Nothing to hand in).

