MAT 1001 / 458 : Real Analysis II Assignment 3, due February 1, 2022

1. Tail sum formula. Let $f \in L^p$, where $1 \le p < \infty$, and let $\lambda_f(t) := \mu(\{x : |f(x)| > t\})$ denote its distribution function.

Prove that

$$||f||_p^p = \int_0^\infty p t^{p-1} \lambda_f(t) dt$$

- 2. *The scale of* L^p *-spaces.* Let (X, μ) be a measure space.
 - (a) For $1 \le p < q \le \infty$, show that $L^p \cap L^q$ increases with p (and decreases with q), while $L^p + L^q$ decreases with p (and increases with q).
 - (b) Prove that $L^1 \cap L^\infty \subset L^p \subset L^1 + L^\infty$ for all 1 .
 - (c) Furthermore, $L^1 \cap L^\infty$ is dense in L^p for all $1 \le p < \infty$.
 - (d) However, $L^1 \cap L^\infty$ is not dense in L^∞ unless μ is finite.
- 3. (Best constants in Young's inequality). In Assignments 1 and 2, you established Young's inequality with constant C = 1.
 - (a) If p, q, r > 1, show that Young's inequality is strict unless one of the three functions f, g, h vanishes a.e.. (*Hint:* Revisit the Hölder estimate from Assignment 1.)
 - (b) Brascamp-Lieb [1976] and Beckner [1976] proved that for p, q, r > 1, the best-possible constant satisfies $C_{p,q,r,n} < 1$, and is attained by suitable centered Gaussians $f = e^{-a|x|^2}$, $g = e^{-b|x|^2}$ (and $h = e^{-c|x|^2}$). Taking this result for granted, compute the value of the sharp constant $C_{p,q,r,n}$ by optimizing over a, b (and c > 0.
- 4. Additive \Rightarrow linear? Suppose a function $f : \mathbb{R} \to \mathbb{R}$ satisfies

$$f(x+y) = f(x) + f(y), \quad x, y \in \mathbb{R}.$$

(a) Assuming that f is continuous, prove that it is linear, i.e., there exists $\alpha \in \mathbb{R}$ such that

$$f(x) = \alpha x, \qquad x \in \mathbb{R}.$$

Hint: Consider the value of f at rational points.

- (b) Establish the same conclusion under the assumption that f is just measurable. *Hint:* Convolve e^{if} with a smooth bump function ϕ . The convolution is smooth!
- (c) Can you construct a (non-measurable) function f that is additive but not linear? How?

5. L^p -bound on the maximal operator. Consider the Hardy-Littlewood maximal operator, defined on locally integrable functions $f : \mathbb{R}^d \to \mathbb{C}$ by

$$Hf(x) := \sup_{r>0} \frac{1}{m((B_r(x)))} \int_{B_r(x)} |f(y)| \, dy \, .$$

Here, m denotes Lebesgue measure, and $B_r(x)$ is the ball of radius r centered at x. By the Maximal Theorem (Theorem 3.27 in Folland),

$$m(\{x \in \mathbb{R}^d : Hf(x) > \alpha\}) \le \frac{A}{\alpha} \|f\|_1 \quad \text{for all } \alpha > 0, f \in L^1$$

holds with constant $A = 3^d$. You are asked to find constants C_p for p > 1 such that

$$||Hf||_p \le C_p ||f||_p \quad \text{for all } f \in L^p \,. \tag{1}$$

(a) Argue that $||Hf||_{\infty} \leq ||f||_{\infty}$ for all $f \in L^{\infty}$, i.e., $C_{\infty} = 1$.

Let now $f \in L^p$ for some $p \in (1, \infty)$. For a > 0 to be chosen below, we split $f \in L^p$ into two layers, $f = g_a + h_a$, where

$$g_a := \operatorname{sign}(f) \min\{|f|, a\}, \quad h_a := \operatorname{sign}(f) (|f| - a)_+.$$

We showed in class that g_a is bounded and h_a is integrable, with

$$||g_a||_{\infty} \le a$$
, $||h_a||_1 = \int_a^\infty m(\{x : |f(x)| > t) dt$.

(b) *Sublinearity*. Show that for any a, t > 0,

$$m(\{|Hf| > 2t\}) \le m(\{|Hg_a| > t\}) + m(\{|Hh_a| > t\}).$$

(c) Therefore,

$$m(\{|Hf| > 2a\}) \le \frac{C_1}{a} \int_a^\infty m(\{x : |f(x)| > s|) \, ds \,, \qquad a > 0 \,.$$

- (d) Insert this estimate into the tail sum formula to bound $||Hf||_p^p$ in terms of $||f||_p^p$. What value do you obtain for the constant C_p in Eq. (1)?
- 6. *Real vs. complex interpolation*. In Problem 5, you proved a special case of the Marcinkiewicz interpolation theorem. Read the general statement, Theorem 6.28 in Folland, and compare it with the Riesz-Thorin interpolation theorem (Theorem 6.27). Try find at least 3 important differences. (Nothing to hand in).