MAT 1001 / 458 : Real Analysis II Assignment 2, due January 25, 2022

- 1. *Matrix norms*. Recall the definition of the finite-dimensional normed vector spaces ℓ_n^p from Assignment 1, Problem 1. Let $T : \ell_m^p \to \ell_n^p$ be a linear transformation. For $p = 1, 2, \infty$, find the norm of T in terms of its $n \times m$ matrix M.
- 2. Uniform smoothness and uniform convexity. Fix 1 .
 - (a) Prove that

$$(a+b)^p + (a-b)^p \ge 2a^p + p(p-1)a^{p-2}b^2\,, \quad \text{for } a > b \ge 0$$

(By scaling, it suffices to consider the case $a = 1, 0 \le b < 1$).

(b) Recall Hanner's inequality: for all $u, v \in L^p$,

$$\|u+v\|_{p}^{p}+\|u-v\|_{p}^{p} \ge \left(\|u\|_{p}+\|v\|_{p}\right)^{p}+\left\|\|u\|_{p}-\|v\|_{p}\right|^{p}.$$
(1)

Prove the complementary inequality

$$2^{p} \left(\|u\|_{p}^{p} + \|v\|_{p}^{p} \right) \geq \left(\|u+v\|_{p} + \|u-v\|_{p} \right)^{p} + \left\| \|u+v\|_{p} - \|u-v\|_{p} \right|^{p}.$$
 (2)

- (c) Suppose ||u||_p = ||v||_p = 1, and ||u v||_p = δ > 0 is very small. Explain how Hanner's inequality implies that the unit ball in L^p (for 1
 (Which of the two inequalities (1) and (2) yields what? Think of the unit ball in ℓ₂¹; a sketch will help.)
- (d) Adapt your argument to the case $2 \le p < \infty$.
- 3. Another proof of Young's inequality (see Assignment 1, Problem 5). Let $p, q, r \in [1, \infty]$ with $\frac{1}{p} + \frac{1}{q} + \frac{1}{r} = 2$.
 - (a) Show that Young's inequality is equivalent to

$$||f * g||_{r'} \le C ||f||_p ||g||_q$$

where r' is the Hölder dual exponent to r (i.e., $\frac{1}{r} + \frac{1}{r'} = 1$).

- (b) Given p > 1, prove this inequality with C = 1 by interpolating between q = 1 and q = p'. (Consider the linear transformation $T_f : g \mapsto f * g$.)
- 4. *Riesz Representation theorem for* L^p , $1 \le p < \infty$. Read Theorem 6.15 of Folland, its proof, and the subsequent discussion. Compare with the proof presented in the Wednesday's lecture. (Nothing to hand-in)

- 5. Differentiability of L^p -norms. Given $1 , consider the (nonlinear) functional <math>\Psi$ on L^p , defined by $\Psi(u) = ||u||_p^p$.
 - (a) Gâteaux differential. Prove that the directional derivative

$$D_v\Psi(u) := \frac{d}{dt}\Psi(u+tv)\big|_{t=0}$$

exists for any $u, v \in L^p$.

(b) Given $u \in L^p$, determine $h \in L^q$ such that $D_v \Psi(u) = \operatorname{Re} \int (hv) d\mu$. Here q is the Hölder dual of p.

Remark. The map $v \mapsto \int hv d\mu$, considered as an element of the dual space $(L^p)^*$, is called the *Gâteaux derivative* of Ψ . This concept of derivative is used extensively in the Calculus of Variations. In general, the Gâteaux differential $D_v F(u)$ may be non-linear and non-continuous in v.

6. Let f, g be nonnegative integrable function on a measure space (X, μ) . Prove that

$$||f - g||_1 = \int_0^\infty \mu(\{x : f(x) > t\} \Delta \{x : g(x) > t\}) dt.$$

Here, $A\Delta B := (A \setminus B) \cup (B \setminus A)$ denotes the symmetric difference of two sets A, B.