MAT 1001 / 458 : Real Analysis II Assignment 10, due April 5, 2022

1. Compute the weak (distributional) derivatives of the function $f(x)=[\sin x]_{+}$up to order 4 .
2. The fundamental lemma of the Calculus of Variations

Prove: If $F \in\left(C_{c}^{\infty}\right)^{\prime}(\mathbb{R})$ satisfies $d / d_{x} F=0$ in the sense of distributions, then F is (represented by) a constant function, i.e., there exists a constant c such that $F(\phi)=c \int \phi$ for all test functions $\phi \in C_{c}^{\infty}$.
Hint: First consider the case where $\int \phi=0$. (Write $\phi=d \Phi / d x$ for some test function Φ.)
3. (Singularities of $W^{1, p}$-functions)

Let B be the unit ball in \mathbb{R}^{n}. For what values of $n \geq 1, \lambda>0$, and $p \in[1, \infty]$ does the function $f(x)=|x|^{-\lambda}$ represent an element of $W^{1, p}(B)$?
(Start by finding the distributional gradient of f).

4. The Poisson summation formula

(a) Let $f \in \mathcal{S}(\mathbb{R})$, and let \hat{f} be its Fourier (integral) transform. Prove that

$$
\sum_{k=-\infty}^{\infty} f(k)=\sum_{k=-\infty}^{\infty} \hat{f}(k)
$$

Hint: Consider the Fourier series of the periodic function $F(x)=\sum_{k=-\infty}^{\infty} f(x+k)$.
(b) Conclude that the Gaussian sum $G(t)=\sum_{k=-\infty}^{\infty} e^{-\pi t k^{2}}$ satisfies $G(t)=t^{-1 / 2} G\left(t^{-1}\right)$.
(c) In particular, $G(t) \sim t^{-1 / 2}$ as $t \rightarrow 0$ (i.e., $\lim _{t \rightarrow 0} t^{1 / 2} G(t)=1$).

Remarks. (a) The Poisson summation formula also holds in higher dimensions.
(But the proof in Folland is garbled.) (b) The identity for the Gaussian sum extends to the right half-plane $\{\operatorname{Re} t>0\}$ by analytic continuation.
5. Fourier transform of $|x|^{-\lambda}$ (in the sense of distributions)

For $\lambda \in(0, n)$, consider the function defined on $\mathbb{R}^{n} \backslash\{0\}$ by $f_{\lambda}(x)=|x|^{-\lambda}$.
(a) Verify that f_{λ} defines a tempered distribution $F_{\lambda} \in \mathcal{S}^{\prime}$.
(b) Suppose you know that its Fourier transform $\hat{F}_{\lambda} \in \mathcal{S}^{\prime}$ is also represented by a function (denoted by \hat{f}_{λ}). Use rotations and dilations to see that \hat{f}_{λ} must have the form

$$
\hat{f}_{\lambda}=C f_{n-\lambda}
$$

for some constant $C=C_{n, \lambda}$.
(c) Argue that the constant $C_{n, \lambda}$ is real and positive.
(d) Conclude that the Coulomb energy

$$
\int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} \phi(x)|x-y|^{-1} \bar{\phi}(y) d x d y=C_{3,1} \int_{\mathbb{R}^{3}}|k|^{-2}|\hat{\phi}(k)|^{2} d k
$$

is real and positive for every $\phi \in \mathcal{S}\left(\mathbb{R}^{3}\right)$.
Remark. The functions f_{λ} are called Riesz-potentials. See Lieb-Loss Theorem 5.9 for a proper computation of their distributional Fourier transform.

6. Nyquist's sampling theorem

Let f be a continuous function on \mathbb{R} such that its Fourier transform satisfies $\hat{f}(k)=0$ for all $|k|>1 / 2$. Such a function is called band-limited.
Show that

$$
f(x)=\sum_{\ell=-\infty}^{\infty} \frac{\sin (\pi(x-\ell))}{\pi(x-\ell)} f(\ell)
$$

that is, f is completely determined by its values at the integers.
Remark. The right hand side is evaluated by "sampling" the value of the "signal" f at the points $\pi \ell$, where $\in \mathbb{Z}$. The formula then "reconstructs" f on the entire real line. The corresponding result for a bandwidth of $L \neq 1 / 2$ is obtained by scaling (here, the function needs to be sampled at intervals of length π / L.) For the human ear, $L \approx 22,000 \mathrm{~Hz}$, a key parameter in digital recording and compression.
(Nothing to hand-in for Problem 6)

