MAT 1001 / 458 : Real Analysis II Assignment 10, due April 5, 2022

- 1. Compute the weak (distributional) derivatives of the function $f(x) = [\sin x]_+$ up to order 4.
- The fundamental lemma of the Calculus of Variations
 Prove: If F ∈ (C[∞]_c)'(ℝ) satisfies d/d_x F = 0 in the sense of distributions, then F is (represented by) a constant function, i.e., there exists a constant c such that F(φ) = c ∫ φ for all test functions φ ∈ C[∞]_c.

Hint: First consider the case where $\int \phi = 0$. (Write $\phi = d\Phi/dx$ for some test function Φ .)

3. (Singularities of W^{1,p}-functions)
Let B be the unit ball in ℝⁿ. For what values of n ≥ 1, λ > 0, and p ∈ [1,∞] does the function f(x) = |x|^{-λ} represent an element of W^{1,p}(B)?
(Start by finding the distributional gradient of f).

4. The Poisson summation formula

(a) Let $f \in \mathcal{S}(\mathbb{R})$, and let \hat{f} be its Fourier (integral) transform. Prove that

$$\sum_{k=-\infty}^{\infty} f(k) = \sum_{k=-\infty}^{\infty} \hat{f}(k) \,.$$

Hint: Consider the Fourier series of the periodic function $F(x) = \sum_{k=-\infty}^{\infty} f(x+k)$.

- (b) Conclude that the Gaussian sum $G(t) = \sum_{k=-\infty}^{\infty} e^{-\pi tk^2}$ satisfies $G(t) = t^{-1/2}G(t^{-1})$.
- (c) In particular, $G(t) \sim t^{-1/2}$ as $t \to 0$ (i.e., $\lim_{t\to 0} t^{1/2}G(t) = 1$).

Remarks. (a) The Poisson summation formula also holds in higher dimensions. (But the proof in Folland is garbled.) (b) The identity for the Gaussian sum extends to the right half-plane $\{\operatorname{Re} t > 0\}$ by analytic continuation.

- 5. Fourier transform of $|x|^{-\lambda}$ (in the sense of distributions) For $\lambda \in (0, n)$, consider the function defined on $\mathbb{R}^n \setminus \{0\}$ by $f_{\lambda}(x) = |x|^{-\lambda}$.
 - (a) Verify that f_{λ} defines a tempered distribution $F_{\lambda} \in \mathcal{S}'$.
 - (b) Suppose you know that its Fourier transform $\hat{F}_{\lambda} \in S'$ is also represented by a function (denoted by \hat{f}_{λ}). Use rotations and dilations to see that \hat{f}_{λ} must have the form

$$\hat{f}_{\lambda} = C f_{n-\lambda}$$

for some constant $C = C_{n,\lambda}$.

- (c) Argue that the constant $C_{n,\lambda}$ is real and positive.
- (d) Conclude that the Coulomb energy

$$\int_{\mathbb{R}^3} \int_{\mathbb{R}^3} \phi(x) |x - y|^{-1} \bar{\phi}(y) \, dx \, dy = C_{3,1} \int_{\mathbb{R}^3} |k|^{-2} |\hat{\phi}(k)|^2 \, dk$$

is real and positive for every $\phi \in \mathcal{S}(\mathbb{R}^3)$.

Remark. The functions f_{λ} are called *Riesz-potentials*. See Lieb-Loss Theorem 5.9 for a proper computation of their distributional Fourier transform.

6. Nyquist's sampling theorem

Let f be a continuous function on \mathbb{R} such that its Fourier transform satisfies $\hat{f}(k) = 0$ for all |k| > 1/2. Such a function is called *band-limited*.

Show that

$$f(x) = \sum_{\ell=-\infty}^{\infty} \frac{\sin(\pi(x-\ell))}{\pi(x-\ell)} f(\ell) ,$$

that is, f is completely determined by its values at the integers.

Remark. The right hand side is evaluated by "sampling" the value of the "signal" f at the points $\pi \ell$, where $\in \mathbb{Z}$. The formula then "reconstructs" f on the entire real line. The corresponding result for a bandwidth of $L \neq 1/2$ is obtained by scaling (here, the function needs to be sampled at intervals of length π/L .) For the human ear, $L \approx 22,000$ Hz, a key parameter in digital recording and compression.

(Nothing to hand-in for Problem 6)