MAT 1001 / 458 : Real Analysis II
 Assignment 1, due January 18, 2022

1. The spaces ℓ_{d}^{p}. Consider the functions on \mathbb{R}^{d} defined by

$$
\|x\|_{p}:= \begin{cases}\left(\sum_{i=1}^{d}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}, & \text { for } 0<p<\infty \\ \max _{i=1, \ldots d}\left|x_{i}\right|, & \text { for } p=\infty\end{cases}
$$

(a) Briefly explain why this defines a norm when $p \geq 1$ but not for $p<1$.
(b) Sketch the unit balls for $p \geq 1$ in dimension $d=2$.
(Use one picture, and include at least the values $p=1,2, \infty$).
(c) Equivalence of norms. For $1<p<q<\infty$, show that

$$
\|x\|_{\infty} \leq\|x\|_{q} \leq\|x\|_{p} \leq\|x\|_{1} \leq d\|x\|_{\infty}, \quad \text { for all } x \in \mathbb{R}^{d}
$$

(d) Conclude that all these norms define the same topology on \mathbb{R}^{d}.
2. In a few words, can you tell me where you are in your studies?

Do you know where your interests lie?
What do you hope to gain from this course?
3. (Folland 6.5) Let (X, \mathcal{M}, μ) be a measure space, and $1 \leq p<q<\infty$. Show that ...
(a) $\ldots L^{p} \subset L^{q}$ if and only if X does not contain sets of arbitrarily small positive measure;
(b)...$L^{q} \subset L^{p}$ if and only if X does not contain sets of arbitrarily large finite measure.

Additional question (not to be handed in): What about the case $q=\infty$?
4. (Folland 6.38) Let (X, μ) be a measure space, and $1 \leq p<\infty$. Show that

$$
f \in L^{p}(d \mu) \Longleftrightarrow \sum_{k=-\infty}^{\infty} 2^{k p} \mu\left(\left\{x:|f(x)|>2^{k}\right\}\right)<\infty
$$

5. Young's inequality says that, for suitable values of p, q, r, n, there is a constant C such that

$$
\left|\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} f(x) g(x-y) h(y) d x d y\right| \leq C\|f\|_{p}\|g\|_{q}\|h\|_{r}
$$

for all $f \in L^{p}\left(\mathbb{R}^{n}\right), g \in L^{q}\left(\mathbb{R}^{n}\right)$, and $h \in L^{r}\left(\mathbb{R}^{n}\right)$.
(a) Dilation. For $\lambda>0$, define $f_{\lambda}(x)=f\left(\lambda^{-1} x\right)$, and correspondingly for g and h. Assuming Young's inequality holds for some p, q, r, n, derive a necessary condition on these parameters.
(b) Prove Young's inequality by applying Hölder's inequality to the functions

$$
\begin{aligned}
\alpha(x, y) & =|g(x-y)|^{q / p^{\prime}}|h(y)|^{r / p^{\prime}} \\
\beta(x, y) & =|h(y)|^{r / q^{\prime}}|f(x)|^{p / q^{\prime}} \\
\gamma(x, y) & =|f(x)|^{p / r^{\prime}}|g(x-y)|^{q / r^{\prime}} .
\end{aligned}
$$

6. The bathtub principle. Let V be a real-valued (Lebesgue-) measurable function on a domain $\Omega \subset \mathbb{R}^{d}$ such that the sub-level sets $S_{t}:=\{x: f(x)<t\}$ have finite measure for each $t \in \mathbb{R}$. Given $M>0$, consider the problem of minimizing

$$
I(g)=\int V(x) g(x) d x
$$

among all functions g with $0 \leq g \leq 1$ and $\int g=M$.
(a) Prove that the minimum is assumed by the characteristic function of some measurable set $A \subset \Omega$.
(b) Describe all possible minimizers. Under what conditions on M is the minimizer unique (up to a set of measure zero)?

Hint: Try $A=S_{t}$ for a suitable choice of t.

