MAT 1001 / 458 : Real Analysis II Assignment 1, due January 18, 2022

1. *The spaces* ℓ_d^p . Consider the functions on \mathbb{R}^d defined by

$$||x||_p := \begin{cases} \left(\sum_{i=1}^d |x_i|^p \right)^{\frac{1}{p}}, & \text{for } 0$$

- (a) Briefly explain why this defines a norm when $p \ge 1$ but not for p < 1.
- (b) Sketch the unit balls for p ≥ 1 in dimension d = 2.
 (Use one picture, and include at least the values p = 1, 2, ∞).
- (c) *Equivalence of norms.* For 1 , show that

$$||x||_{\infty} \le ||x||_{q} \le ||x||_{p} \le ||x||_{1} \le d||x||_{\infty}$$
, for all $x \in \mathbb{R}^{d}$.

- (d) Conclude that all these norms define the same topology on \mathbb{R}^d .
- 2. In a few words, can you tell me where you are in your studies? Do you know where your interests lie? What do you hope to gain from this course?
- 3. (Folland 6.5) Let (X, \mathcal{M}, μ) be a measure space, and $1 \le p < q < \infty$. Show that ...
 - (a) ... $L^p \subset L^q$ if and only if X does not contain sets of arbitrarily small positive measure;
 - (b) ... $L^q \subset L^p$ if and only if X does not contain sets of arbitrarily large finite measure.

Additional question (not to be handed in): What about the case $q = \infty$?

4. (Folland 6.38) Let (X, μ) be a measure space, and $1 \le p < \infty$. Show that

$$f \in L^p(d\mu) \quad \Longleftrightarrow \quad \sum_{k=-\infty}^{\infty} 2^{kp} \mu(\{x : |f(x)| > 2^k\}) < \infty.$$

5. Young's inequality says that, for suitable values of p, q, r, n, there is a constant C such that

$$\left|\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} f(x)g(x-y)h(y)\,dxdy\right| \le C\,\|f\|_p\,\|g\|_q\,\|h\|_r$$

for all $f \in L^p(\mathbb{R}^n)$, $g \in L^q(\mathbb{R}^n)$, and $h \in L^r(\mathbb{R}^n)$.

- (a) Dilation. For $\lambda > 0$, define $f_{\lambda}(x) = f(\lambda^{-1}x)$, and correspondingly for g and h. Assuming Young's inequality holds for some p, q, r, n, derive a necessary condition on these parameters.
- (b) Prove Young's inequality by applying Hölder's inequality to the functions

$$\begin{aligned} \alpha(x,y) &= |g(x-y)|^{q/p'} |h(y)|^{r/p'}, \\ \beta(x,y) &= |h(y)|^{r/q'} |f(x)|^{p/q'}, \\ \gamma(x,y) &= |f(x)|^{p/r'} |g(x-y)|^{q/r'}. \end{aligned}$$

6. The bathtub principle. Let V be a real-valued (Lebesgue-) measurable function on a domain $\Omega \subset \mathbb{R}^d$ such that the sub-level sets $S_t := \{x : f(x) < t\}$ have finite measure for each $t \in \mathbb{R}$. Given M > 0, consider the problem of minimizing

$$I(g) = \int V(x)g(x) \, dx$$

among all functions g with $0 \le g \le 1$ and $\int g = M$.

- (a) Prove that the minimum is assumed by the characteristic function of some measurable set $A \subset \Omega$.
- (b) Describe all possible minimizers. Under what conditions on M is the minimizer unique (up to a set of measure zero)?

Hint: Try $A = S_t$ for a suitable choice of t.