Practice Problems (collected at UVa)

1. Define ...
measure, outer measure, σ-algebra, complete measure, σ-finite measure; product σ-algebra and product measure; Borel set, F_{σ} and G_{δ} sets, Lebesgue measurable set, outer regularity; integrable function; Banach space, the space L^{1}; simple and really simple functions on \mathbb{R}^{d}
2. State ...
continuity from above and below, the monotone class theorem, the Vitali-Hahn-Saks theorem, the Borel-Cantelli lemma, Carathéodory's extension theorem, the great convergence theorems; completeness of L^{1}; the theorems of Fubini and Tonelli; the change of variables formula; translation and rotation invariance of Lebesgue measure
3. Give an example of ...
(a) a closed set of positive measure that has no interior;
(b) a sequence of functions $\left\{f_{n}\right\}$ in $L^{1}(\mathbb{R})$ converging to zero pointwise a.e. but such that

$$
\lim \int_{\mathbb{R}} f_{n}(x) d x \neq 0
$$

(c) a L^{1}-Cauchy sequence of functions which does not converge pointwise anywhere.
4. True or False?
(a) If f is a measurable function on $[0,1]$, then the set

$$
C=\{x \in[0,1]: f \text { is continuous at } x
$$

is measurable.
(b) A subset of full Lebesgue measure in $(0,1)$ is necessarily dense.
(c) A nowhere dense subset of $(0,1)$ has measure zero.
5. Assume that $E \subset \mathbb{R}$ has Lebesgue measure zero. Can the set

$$
G=\left\{(x, y) \in \mathbb{R}^{2}: x-y \in E\right\}
$$

have positive Lebesgue measure?
6. Let f be a nonnegative measurable function on \mathbb{R}^{d} with

$$
m(\{x: f(x)>\lambda\})=\frac{1}{1+\lambda^{2}}
$$

Compute the L^{1}-norm of f.
7. If f is an integrable function on \mathbb{R}^{d} such that

$$
\int_{E} f(x) d x=0
$$

for every measurable set E, prove that $f=0$ a.e.
8. Let $\left\{f_{n}\right\}$ be a sequence of nonnegative measurable functions on $[0,1]$ with

$$
\sum_{n=1}^{\infty} \int_{0}^{1} f_{n}(x) d m(x)<\infty
$$

Show that except for x in a set of measure zero, $f_{n}(x) \geq 1$ occurs only for finitely many n.
9. Let $\left\{f_{n}\right\}_{n \geq 1}$ and f be real-valued measurable functions on \mathbb{R}.
(a) If $f_{n} \rightarrow f$ a.e., show that for any positive number $\varepsilon>0$,

$$
\lim _{n \rightarrow \infty} m\left(\left\{x:\left|f(x)-f_{n}(x)\right|>\varepsilon\right\}\right)=0
$$

(b) What can you say about the converse?
10. If $\left\{f_{n}\right\}$ is a fast Cauchy sequence in $L^{1}\left(\mathbb{R}^{d}\right)$, in the sense that $\left\|f_{n}-f_{n-1}\right\|_{L^{1}} \leq 2^{-n}$, prove that $\lim f_{n}(x)$ exists for almost every x.
11. For $c>1$, find

$$
\lim _{n \rightarrow \infty} \int_{0}^{n}\left(1+\frac{x}{n}\right)^{n} e^{-c x} d x
$$

12. Let $f(\lambda, x)$ be a continuous function of two variables on the unit square $0<\lambda, x<1$. Suppose that the partial derivative $\frac{\partial f}{\partial \lambda}(\lambda, x)$ exists for all λ and x, and that

$$
h(x)=\sup _{0<\lambda<1}\left|\frac{\partial f}{\partial \lambda}(\lambda, x)\right|
$$

is integrable. Show that the function $F(\lambda)=\int_{0}^{1} f(\lambda, x) d x$ is differentiable and satisfies

$$
F^{\prime}(\lambda)=\int_{0}^{1} \frac{\partial f}{\partial \lambda}(\lambda, x) d x
$$

13. Let f be a integrable function on $[0,1]$, and consider $S=\{x \in[0,1]: f(x)$ is an integer $\}$. Evaluate

$$
\lim _{n \rightarrow \infty} \int_{0}^{1}|\cos \pi f(x)|^{n} d x
$$

14. Evaluate $\lim _{\varepsilon \rightarrow 0^{+}} \int_{0}^{\infty} \frac{e^{-x}}{1+\varepsilon^{2} x} d x$.
15. For which positive real numbers p does the integral

$$
\int_{0}^{1} \int_{0}^{1} \frac{1}{\left(x^{2}+y^{2}\right)^{p}} d x d y
$$

converge?
16. Let $Q=[0,1] \times[0,1]$ be the unit square. Show that

$$
\int_{Q} \frac{1}{1-x y} d m=\sum_{n \geq 1} \frac{1}{n^{2}}
$$

17. Let f be an integrable function such that

$$
\int_{0}^{\infty} x|f(x)| d x<\infty
$$

Prove that

$$
\frac{d}{d t} \int_{0}^{\infty} \sin (x t) f(x) d x=\int_{0}^{\infty} x \cos (x t) f(x) d x
$$

18. Prove that

$$
\lim _{n \rightarrow \infty} n \int_{0}^{\infty} e^{-x^{2}}\left(e^{\frac{x}{n}}-1\right) d x=\int_{0}^{\infty} x e^{-x^{2}} d x=\frac{1}{2}
$$

19. Evaluate

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{R}}\left(1-e^{-\frac{t^{2}}{n}}\right) e^{-|t|} \cos t d t
$$

20. Let M be a positive definite symmetric $n \times n$ matrix. Find the measure of the ellipsoid

$$
E=\left\{x \in \mathbb{R}^{n}: x \cdot M x<1\right\}
$$

in terms of M and the measure of the unit ball. (Hint: Diagonalize M.)
21. A function $f:(0, \infty) \rightarrow \mathbb{R}$ is improperly Riemann integrable if the Riemann integral

$$
I(t)=\int_{0}^{t} f(x) d x
$$

exists for every $t>0$ and converges to some finite limit I as $t \rightarrow \infty$. If both f and $|f|$ are improperly Riemann integrable, prove that f is Lebesgue integrable and

$$
I=\int_{(0, \infty)} f d m
$$

