Practice Problems (collected at UVa)

1. Define ...
measure, outer measure, σ-algebra, complete measure, σ-finite measure; product σ-algebra and product measure; Borel set, F_{σ} and G_{δ} sets, Lebesgue measurable set, outer regularity; measurable functions and integrable functions; Banach space, the spaces L^{1} and L^{2}; inner product, orthogonality, norm, convergence in L^{2}; completeness; simple and really simple functions on \mathbb{R}^{d}; Fourier series and Fourier coefficients of a function; Poisson kernel and Dirichlet kernel; maximal function, density point of a set, Lebesgue point of a function, signed measures; Hahn decomposition and Jordan decomposition; absolutely continuous and mutually singular measures, Lebesgue-Stieltjes measures on \mathbb{R}; BV functions and absolutely continuous functions, total variation.
2. State ...
continuity from above and below, the monotone class theorem, the Vitali-Hahn-Saks theorem, the Borel-Cantelli lemma, Carathéodory's extension theorem, the great convergence theorems; completeness of L^{1}; Egorov's theorem and Lusin's theorem; the theorems of Fubini and Tonelli; Kolmogorov's extension theorem; the change of variables formula; translation and rotation invariance of Lebesgue measure, Schwarz' inequality, Bessel's inequality and Parseval's identity, the Hardy-Littlewood maximal function theorem, Lebesgue's differentiation theorem in \mathbb{R}^{d}, Vitali's covering lemma; the Lebesgue-Radon-Nikodym theorem on a general measure space, on \mathbb{R}^{d}, and on \mathbb{R}^{1}; the Fundamental Theorem of Calculus.
3. True or False?
(a) If a real-valued function on $(0,1)$ is differentiable, then it is measurable.
(b) Every set of finite Lebesgue measure can be partitioned into two subsets of equal measure.
(c) A subset of full Lebesgue measure in $(0,1)$ is necessarily dense.
(d) If $E \subset \mathbb{R}^{2}$ is a measurable set with the property that its vertical cross sections $E_{x}=\{y \in$ $\mathbb{R} \mid(x, y) \in E\}$ have measure zero for almost every x, then also the horizontal cross sections $E^{y}=\{x \in \mathbb{R} \mid(x, y) \in E\}$ have measure zero for a.e. y.
4. Let $\left(f_{n}\right)$ be a sequence of continuous real-valued functions on \mathbb{R}, and fix $a \in \mathbb{R}$. Prove that

$$
A=\left\{x \in \mathbb{R} \mid \liminf f_{n}(x)<a\right\}
$$

is a Borel set.
5. Prove the Riemann-Lebesgue lemma: If f is integrable on \mathbb{R}, then

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{R}} f(x) e^{-i n x} d x=0
$$

6. Let A be a positive definite, symmetric $d \times d$ matrix. Compute the Gaussian integrals

$$
\int_{\mathbb{R}^{d}} e^{-x \cdot A x} d m(x) \quad \text { and } \quad \int_{\mathbb{R}^{d}}|x|^{2} e^{-x \cdot A x} d m(x) .
$$

7. (a) Is $\sum_{|n| \geq 1} n^{-\frac{3}{4}} e^{-n x}$ the Fourier series of a function in $L^{2}[0,2 \pi]$?
(b) Is $\sum_{n \geq 0} \sin (n) e^{i n x}$ the Fourier series of a function in $L^{2}[0,2 \pi]$?
(c) Is $\sum_{n \geq 0} \sin (n) e^{i n x}$ the Fourier series of a function in $L^{1}[0,2 \pi]$?
8. Let (X, Σ, μ) be a measure space with $\mu(X)<\infty$, and let \mathcal{F} be a σ-algebra contained in Σ.
(a) If f is a μ-integrable function on X, prove that there exists a \mathcal{F}-measurable function h with

$$
\int_{E} f d \mu=\int_{E} h d \mu
$$

for all $E \in \mathcal{F}$. (Hint: Consider the measure ν obtained by restricting μ to \mathcal{F}.)
(b) Find the function h if $X=(0,1)$ with Lebesgue measure, and \mathcal{F} is the σ-algebra generated by the two intervals $\left[0, \frac{1}{2}\right]$ and $\left[\frac{1}{2}, 1\right]$, and $f(x)=x^{2}$.
9. Let $K(x, y)$ be a measurable complex-valued function on the unit square $0 \leq x, y \leq 1$ with

$$
\int_{0}^{1} \int_{0}^{2}|K(x, y)|^{2} d x d y<\infty
$$

Prove that if $f \in L^{2}[0,1]$, then the integral

$$
T f(x)=\int_{0}^{1} K(x, y) f(x) d y
$$

converges for a.e. x.
10. Is the function defined by

$$
f(x)=\sum_{n=0}^{\infty} 2^{-n} e^{i n x}
$$

continuous? Differentiable? Evaluate $\int_{0}^{2 \pi}|f(x)|^{2} d x$.
11. Let $\left\{f_{n}\right\}$ be a sequence of measurable real-valued functions on \mathbb{R} such that

$$
\sum_{n=1}^{\infty} \int\left|f_{n}(x)\right| d x<\infty
$$

Prove that the series $\sum f_{n}(x)$ converges for a.e. $x \in \mathbb{R}$, and that

$$
\int\left(\sum_{n=1}^{\infty} f_{n}(x)\right) d x=\sum_{n=1}^{\infty}\left(\int f_{n}(x) d x\right)
$$

12. Let $X=[0,1]$ with Lebesgue measure m, and let $Y=[0,1]$ with counting measure ν. If f is the characteristic function of the diagonal $\{(x, x): x \in[0,1] \subset X \times Y$. Show by evaluating both sides that

$$
\int_{X}\left\{\int_{Y} f d \nu\right\} d m \neq \int_{Y}\left\{\int_{X} f d m\right\} d \nu
$$

Why does this not contradict Fubini's theorem?
13. Let $\left\{f_{n}\right\}$ be a sequence of functions in $L^{2}[0,1]$ with $\left\|f_{n}\right\|_{L^{2}} \leq M$. Assume furthermore that there exists a measurable function f such that

$$
\lim _{n \rightarrow \infty} \int_{0}^{1}\left|f_{n}(x)-f(x)\right| d m(x)=0
$$

Show that $f \in L^{2}$. Does it follow that f_{n} converges to f in L^{2} ?
14. (Folland 6.38) Let f be a nonnegative measurable function on a measure space (X, \mathcal{M}, μ). Prove that

$$
f \in L^{1} \Longleftrightarrow \sum_{k=-\infty}^{\infty} 2^{k} \mu\left(\left\{x: f(x)>2^{k}\right\}\right)<\infty
$$

15. Suppose that μ, ν are Borel measures on \mathbb{R} that agree on each interval $I \subset \mathbb{R}$. Prove that $\mu=\nu$.
16. Let f be a measurable function on $[0, \infty)$, and define

$$
F(s)=\int_{0}^{\infty} \frac{f(x)}{(1+s x)^{2}} d x
$$

(a) If $\frac{f(x)}{x}$ is integrable prove that $F(s)$ is finite a.e., and that F is integrable over $[0, \infty)$.
(b) If $f(x) \geq 0$ and $F(s)$ is bounded, then f itself must be integrable.
(c) Assume that f is continuous, and that $a:=\lim _{x \rightarrow \infty} f(x)$ exists. Find

$$
\lim _{s \rightarrow 0} s F(s), \quad \lim _{s \rightarrow \infty} s F(s)
$$

17. Let $f(x, t)$ be a real-valued function on \mathbb{R}^{2} such that $f(\cdot, t)$ is continuous for every $t \in \mathbb{R}$. Suppose there exists an integrable function g such that

$$
|f(x, t)| \leq g(t), \quad \text { for all } x, t \in \mathbb{R}
$$

Prove that

$$
F(x)=\int_{\mathbb{R}} f(x, t) \cos t d t
$$

is bounded and continuous.
18. State two simple simple (useful) conditions, each of which guarantees that

$$
\sum_{n=1}^{\infty}\left(\int f_{n} d \mu\right)=\int\left(\sum_{n=1}^{\infty} f_{n}\right) d \mu
$$

19. (Folland 2.13) Let $\left(f_{n}\right)_{n \geq 1}$ be a sequence of nonnegative measurable functions. Assume that $f_{n} \rightarrow f$ pointwise a.e., and that $\int f_{n} \rightarrow \int f$.
(a) If f is integrable, show that $\int_{E} f=\lim \int_{E} f_{n}$ for all measurable sets E.
(b) However, this need not be true if $\int f=\infty$.
