MAT 1000 / 457 : Real Analysis I
 Midterm Test, November 7, 2012

(Four problems; $\mathbf{2 0}$ points each. Time: $\mathbf{2}$ hours.)
Please be brief but justify your answers, citing relevant theorems.

1. Prove that the set of all $x \in \mathbb{R}$ such that there exist infinitely many fractions p / q, with relatively prime integers p and q such that

$$
\left|x-\frac{p}{q}\right| \leq \frac{1}{q^{3}}
$$

is a set of meaure zero. (Hint: Use the Borel-Cantelli lemma.)
2. Give an example of ...
(a) a measure space that is not σ-finite but contains sets of every finite positive measure;
(b) an example where the conclusion of the Fubini-Tonelli theorem fails.

Remark: You need not prove that your constructions work, but please describe them clearly. Sometimes a sketch can help ...
3. Consider a sequence $\left\{f_{n}\right\}_{n \geq 1}$ of integrable functions on $[0,1]$ such that

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x=0
$$

(a) Assuming that the functions f_{n} are nonnegative, compute

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} e^{-f_{n}(x)} d x
$$

(b) What can you cay about this limit if the f_{n} 's change sign?
4. (a) Given two functions $f \in L^{p}\left(\mathbb{R}^{n}\right)$ and $g \in L^{q}\left(\mathbb{R}^{n}\right)$, with $p, q>1$ such that $\frac{1}{p}+\frac{1}{q}=1$, consider their convolution

$$
f * g(x)=\int_{\mathbb{R}^{n}} f(x-y) g(y) d y .
$$

Prove that the integral is well-defined for each $x \in \mathbb{R}^{n}$, and that $f * g$ is bounded.
(b) Furthermore, $f * g$ is continuous, and $\lim _{|x| \rightarrow \infty} f * g(x)=0$.

