MAT 1000 / 457 : Real Analysis I
 Assignment 9, due November 27, 2013

1. (Folland 3.13) Consider the unit interval $X=[0,1]$ equipped with the Borel σ-algebra.

Let $m=$ Lebesgue measure, and $\mu=$ counting measure. Prove that
(a) $m \ll \nu$, but $d m \neq f d \mu$ for any function f;
(b) μ has no Lebesgue decomposition with respect to m.

Why does that not contradict the Lebesgue-Radon-Nikodym theorem?
2. Let $\left\{f_{n}\right\}_{n \geq 1}, f, g$ be functions in $L^{2}[0,2 \pi]$, with $f_{n} \rightarrow f$ pointwise a.e. If $\left\|f_{n}\right\|_{L^{2}} \leq M$ for all n and g is bounded, then

$$
\lim _{n \rightarrow \infty} \int_{0}^{2 \pi} f_{n}(x) g(x) d x=\int_{0}^{2 \pi} f(x) g(x) d x
$$

3. As in Problem 4 of Assignment 4 , let $\left(x_{n}\right)_{n \geq 1}$ be the decimal expansion of $x \in(0,1)$. (If the expansion is non-unique, take the one that terminates in 0 .) You will show that

$$
\lim _{n \rightarrow \infty}\left(\frac{1}{n} \#\left\{i=1, \ldots, n: x_{i}=7\right\}\right)=0.1
$$

for almost every $x \in(0,1)$.
(a) Let $y_{n}(x)=\mathcal{X}_{\left\{x_{n}=7\right\}}-0.1$ and $S_{n}(x)=\sum_{k=1}^{n} y_{n}(x)$. Check that

$$
\int_{(0,1)} y_{n}=0, \quad \int_{(0,1)} y_{m} y_{n}=0 \quad \text { for } m \neq n, \quad \text { and } \quad \int_{(0,1)} y_{n}^{2} \leq 1
$$

Use this to estimate $\int S_{n}^{4}$.
(b) Show that

$$
\int_{(0,1)} \sum_{n=1}^{\infty}\left(\frac{S_{n}(x)}{n}\right)^{4}<\infty
$$

and conclude that $S_{n}(x) / n \rightarrow 0$ for almost every x.
4. (Kolmogorov's criterion) Let $(\Omega, \mathcal{M}, \mu)$ be a probability space. A sequence of random variables $X_{i}: \Omega \rightarrow \mathbb{R}$, for $i=1,2, \ldots$ is called independent, if for every $N>0$ and every $t_{1}, \ldots, t_{N} \in \mathbb{R}$,

$$
P\left(X_{1}>t_{1}, \ldots, X_{n}>t_{n}\right)=\prod_{i=1}^{N} P\left(X_{i}>t_{i}\right)
$$

If $\left(X_{i}\right)_{i \geq 1}$ is a sequence of independent random variables with $E\left(X_{i}\right)=0$ for all i and

$$
\sum_{i=1}^{\infty} E\left(X_{i}^{2}\right)<\infty
$$

prove that

$$
P\left(\sum_{i=1}^{\infty} X_{i} \text { converges }\right)=1 .
$$

5. (Convolution with a smooth kernel) Let ϕ be a smooth complex-valued function \mathbb{R}^{d} with compact support (i.e., ϕ vanishes outside some compact set $K \subset \mathbb{R}^{d}$.) If f is integrable, prove that the convolution

$$
f * \phi(x)=\int f(x-y) \phi(y) d y
$$

is smooth. Moreover,

$$
\lim _{|x| \rightarrow \infty} f * \phi(x)=0
$$

6. (Lieb \& Loss Problem 2.10)
(a) Let f be a measurable real-valued function on the real line that is additive i.e.,

$$
f(x+y)=f(x)+f(y) \quad \text { for all } x, y \in \mathbb{R}
$$

Prove that there exists an $\alpha \in \mathbb{R}$ such that $f(x)=\alpha x$, i.e., f is linear.
(b) Give an example of a (non-measurable) function that is additive but not linear.

