MAT 1000 / 457 : Real Analysis I
 Assignment 7, due November 13, 2013

1. (a) (Parallelogram identity) Let $\langle\cdot, \cdot\rangle$ be an inner product on a complex vector space V, and consider the norm defined by $\|f\|=\sqrt{\langle f, f\rangle}$. Prove that

$$
\|f+g\|^{2}+\|f-g\|^{2}=2\left(\|f\|^{2}+\|g\|^{2}\right) .
$$

(b) Show that the parallelogram identity fails in $L^{1}(\mathbb{R})$. Hence the L^{1}-norm does not come from an inner product.
2. (a) Let $\left(f_{n}\right)$ be a sequence of integrable functions that converges in L^{1} to some limiting function f,

$$
\lim _{n \rightarrow \infty} \int\left|f_{n}-f\right| d \mu=0
$$

Prove that there is a subsequence $\left(f_{n_{j}}\right)$ that converges pointwise almost everywhere to f.
(b) ('Typewriter' sequences) Construct an example of a nonnegative sequence of integrable functions $\left(f_{n}\right)$ on the unit interval that converges to zero in L^{1} such that the sequence of values $\left(f_{n}(x)\right)$ converges for no $x \in(0,1)$.
3. Let $\left(f_{n}\right)_{n \geq 1}$ be a sequence of functions on $[0,1]$ that is bounded in L^{2} (i.e., $\sup _{n}\left\|f_{n}\right\|_{2}<\infty$). Assume that there exists a measurable function f such that

$$
\lim _{n \rightarrow \infty} \int_{0}^{1}\left|f_{n}-f\right| d m=0 \quad(n \rightarrow \infty)
$$

Show that $f \in L^{2}$. Does it follow that $f_{n} \rightarrow f$ in L^{2} ?
4. (Lusin's theorem) Let $E \subset \mathbb{R}^{d}$ be a set of finite measure, and let f be a measurable realvalued (or complex-valued) function on E. Given $\varepsilon>0$, prove that there exists a compact set $K \subset E$ with $m(E \backslash K)<\varepsilon$ such that the restriction $\left.f\right|_{K}$ is continuous.
Hint: Approximate f with a sequence of continuous functions and apply Egoroff's theorem.

5. (Folland 2.60: The Beta-integral)

The Gamma-function is defined by $\quad \Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} d t \quad$ for $x>0$. Show that

$$
\frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)}=\int_{0}^{1} t^{x-1}(1-t)^{y-1} d t \quad(x, y>0)
$$

Hint: Write $\Gamma(x) \Gamma(y)$ as double integral and change variables in the inner integral to simplify the exponential.
6. For $1 \leq k \leq n$, compute the spherical integral

$$
\frac{1}{n \omega_{n}} \int_{\mathbb{S}^{n-1}}\left(u_{1}^{2}+\cdots+u_{k}^{2}\right)^{-1 / 2} d \sigma(u),
$$

where σ is the standard rotationally invariant surface measure on the unit sphere \mathbb{S}^{n-1}.
Hint: Rewrite this as a Gaussian integral over \mathbb{R}^{n}. Write your answer either in terms of the Gamma-function or in terms of the measures ω_{d} of the d-dimensional unit balls.

