MAT 1000 / 457 : Real Analysis I
 Assignment 6, due October 23, 2013

1. (Folland 2.28d) For $a \in \mathbb{R}$, compute

$$
\lim _{n \rightarrow \infty} \int_{a}^{\infty} n\left(1+n^{2} x^{2}\right)^{-1} d x
$$

and justify the calculations. (Remark: The answer depends on the sign of a. How does it accord with the various convergence theorems?)
2. (Difference term in Fatou's lemma)

Let $\left\{f_{n}\right\}_{n \geq 1}$ be a sequence of integrable functions that converges pointwise a.e. to f.
(a) Prove that

$$
\lim _{n \rightarrow \infty}\left\{\int\left|f_{n}\right|-\int\left|f-f_{n}\right|\right\}=\int|f(x)| .
$$

(b) Argue that this strengthens the conclusion of Fatou's lemma for $\lim \inf \int\left|f_{n}\right|$.
3. (Folland 2.48) Let $\mu=\nu$ be counting measure on \mathbb{N}. Define $f(m, n)=1$ if $m=n$, $f(m, n)=-1$ if $m=n+1$, and $f(m, n)=0$ otherwise. Find the values of $\iint f d \mu d \nu$, $\iint f d \nu d \mu$, and $\int|f| d(\mu \times \nu)=\infty$. (Why are they defined?)
4. (Folland 2.59: The Dirichlet integral) Show that

$$
\lim _{b \rightarrow \infty} \int_{0}^{b} x^{-1} \sin x d x=\frac{\pi}{2} .
$$

Hint: Integrate the function $e^{-x y} \sin x$ with respect to x and y, and use that

$$
\int e^{-x y} \sin x d x=-e^{-x y}\left(\frac{1}{1+y^{2}} \cos x+\frac{y}{1+y^{2}} \sin x\right) .
$$

Please be careful ... the function $f(x)=x^{-1} \sin x$ is not integrable over $(0, \infty)$!
5. (The Riemann-Lebesgue lemma) If f is integrable on \mathbb{R}, prove that

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{R}} f(x) e^{-i n x} d x=0
$$

6. Does there exist a dense subset of \mathbb{R}^{2} such that no three points are collinear?
