MAT 1000 / 457 : Real Analysis I Assignment 2, due September 25, 2013

1. (Dirac δ -measures on the real line)

Let $a \in \mathbb{R}$. The measure defined on $\mathcal{P}(\mathbb{R})$ by $\delta_a(E) = 1$ for $x \in E$, and $\delta_a(E) = 0$ otherwise, is called the **Dirac mass** at a.

If $\mu : \mathcal{P}(\mathbb{R}) \to \{0, 1\}$ is a measure that takes only the values 0 and 1, prove that either $\mu = 0$, or else $\mu = \delta_a$ for some $a \in \mathbb{R}$.

2. (Points of convergence)

Let $(f_n)_{n\geq 1}$ be a sequence of nonnegative continuous functions on \mathbb{R} . Prove that

$$\left\{ x \in \mathbb{R} \ \Big| \ \sum_{n=1}^{\infty} f_n(x) < \infty \right\}$$

is a Borel set.

3. (a) (Inclusion-exclusion)

Let (X, \mathcal{M}, μ) be a measure space. If A_1, \ldots, A_n are sets of finite measure in \mathcal{M} , prove that

$$\mu\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{\emptyset \neq F \subset \{1,\dots,n\}} (-1)^{1+\#F} \mu\left(\bigcap_{i \in F} A_i\right).$$

(b) (*The forgetful secretary*)

Let S_n be the set of all permutations of $\{1, \ldots, n\}$, and let μ_n be the normalized counting measure defined by $\mu_n(A) = \#A/n!$. Find

$$p_n = \mu_n(\{\pi \in S_n : \pi(i) \neq i \text{ for } i = 1, \dots, n\}),$$

and compute $p = \lim p_n$.

4. (The section property of Borel sets)

Let A be a Borel set in \mathbb{R}^2 . Prove that, for every $y \in \mathbb{R}$, the cross section

$$A(y) = \{x \in \mathbb{R} : (x, y) \in A\}$$

is a Borel set.

5. (Summable \Rightarrow countable)

Let Λ be an infinite set. For each $\lambda \in \Lambda$, let x_{λ} be a nonnegative number. Define the value of the series $\sum x_{\lambda}$ as the supremum of its finite partial sums,

$$\sum_{\lambda \in \Lambda} x_{\lambda} := \sup_{n \ge 0} \sup_{\{\lambda_1, \dots, \lambda_n\} \subset \Lambda} \{ x_{\lambda_1} + \dots + x_{\lambda_n} \} .$$

(Note that the supremum is well-defined, even when its value is infinite.) If

$$\sum_{\lambda \in \Lambda} x_{\lambda} < \infty \,,$$

prove that

$$\Lambda' = \{\lambda \in \Lambda : x_\lambda > 0\}$$

is countable.

6. (Unions over chains of closed sets)

Let $C \subset \mathcal{P}(\mathbb{R})$ be a collection of closed subsets of the real line, with the property that for each pair of sets $A, B \in C$, either $A \subset B$ or $B \subset A$. Prove that $\bigcup_{A \in C} A$ is a Borel set.