MAT 1000 / 457 : Real Analysis I Assignment 10, due Friday December 6, 2013

- 1. (*Folland 3.7*) Let ν be a signed measure on a measurable space (X, \mathcal{M}) . Show that, for every measurable set $E \subset X$,
 - (a) $\nu^+(E) = \sup\{\nu(F) : F \in \mathcal{M}, F \subset E\}$, and correspondingly for ν^- ;
 - (b) the total variation measure $|\nu| = \nu^+ + \nu^-$ satisfies

$$|\nu|(E) = \sup\left\{\sum_{j=1}^{n} |\nu(E_j)| : n \ge 0, E_1, \dots, E_n \subset E \text{ disjoint}\right\}.$$

2. Stein and Shakarchi, Exercise 3.4) Let f be an integrable function on ℝ^d with ||f||_{L¹} = 1.
(a) Show that its maximal function satisfies

$$Hf(x) \ge \frac{c}{|x|^d} \quad (|x| \ge 1)$$

for some c > 0. Conclude that Hf is not integrable on \mathbb{R}^d . (*Hint:* Use that $\int_B |f| > 0$ for some ball B.)

(b) Show that the weak-type estimate provided by the Hardy-Littlewood Maximal Theorem is best possible in the following sense: If f is supported in the unit ball, then

$$m(\{x: Hf(x) > \alpha\}) \ge \frac{c'}{\alpha}$$

for some c' > 0 and all sufficiently small $\alpha > 0$.

3. (Folland 3.41) Let $A \subset [0,1]$ be a Borel set such that $0 < m(A \cap I) < m(I)$ for every subinterval $I \subset [0,1]$ of positive length (as constructed in Problem 6 of Assignment 5).

(a) Let $F(x) = m([0, x] \cap A)$. Then F is absolutely continuous and strictly increasing, but F' vanishes on a set of positive measure.

(b) Let $G(x) = m([0, x] \cap A) - m([0, x] \setminus A)$. Then G is absolutely continuous, but not monotone on any subinterval $I \subset [0, 1]$.

4. Let $\{f_n\}_{n\geq 1}$, f, g be functions in $L^2[0,1]$, with $f_n \to f$ pointwise a.e. If $|f_n(x)| < |x|^{-\frac{1}{3}}$, prove that

$$\lim_{n \to \infty} \int_0^1 f_n(x) g(x) \, dx = \int_0^1 f(x) g(x) \, dx \, .$$

- 5. Let φ be a smooth function with compact support on ℝ^d and ∫ φ = 1.
 (a) For δ > 0, define φ_δ(x) = δ^{-d}φ(x/δ). Convince yourself that ∫ φ_δ = 1.
 - (b) If f is locally integrable, prove that

$$\lim_{\delta \to 0} \phi_{\delta} * f(x) = f(x) \quad \text{for a.e. } x \in \mathbb{R}^d.$$

6. (a) Let U, V be non-empty open sets in Rⁿ, and let T : U → V be a bijection. Assume that for subsets E ⊂ U, the image T(E) is (Lebesgue) measurable if and only if E is measurable. Prove that the **pushforward** of Lebesgue measure to V, given by

$$T \# m(F) = m(T^{-1}(F)), \quad \text{for } F \subset V$$

is absolutely continuous with respect to Lebesgue measure.

Hint: Use that sets of positive measure contain non-measurable subsets.

(b) If T is a diffeomorphism, find the density of T # m with respect to Lebesgue measure, i.e., find a function f such that d(T # m) = f dm.