MAT 1000 / 457 : Real Analysis I Assignment 1, due September 18, 2013

- 1. (Folland 1.1) A non-empty family of sets $\mathcal{R} \in \mathcal{P}(X)$ is called a **ring** if it is closed under finite unions and differences (i.e., if $E, F \in \mathcal{R}$, then $E \cup F \in \mathcal{R}$ and $E \setminus F \in \mathcal{R}$). A ring which is closed under countable unions is called a σ -ring.
 - (a) Rings (resp. σ -rings) are closed under finite (resp. countable) intersections.
 - (b) Let \mathcal{R} be a ring. Then \mathcal{R} is an algebra, if and only if $X \in \mathcal{R}$.
 - (c) If \mathcal{R} is a σ -ring, then $\{E \subset X : E \in \mathcal{R} \text{ or } E^c \in \mathcal{R}\}$ is a σ -algebra.
 - (d) If \mathcal{R} is a σ -ring, then $\{E \subset X : E \cap F \in \mathcal{R} \text{ for all } F \in \mathcal{R}\}\}$ is a σ -algebra.
- 2. Consider the collection of subsets of \mathbb{N} that have a well-defined density,

$$\mathcal{C} = \left\{ A \subset \mathbb{N} \mid \lim_{n \to \infty} \frac{1}{n} \# (A \cap \{1, \dots, n\}) \quad \text{exists} \right\}.$$

Is C a ring?

- 3. (*Folland 1.3*) Let *M* be an infinite *σ*-algebra. Show that ...
 (a) *M* contains an infinite sequence of disjoint non-empty sets;
 (b) *M* is uncountable.
- 4. (Folland 1.4) Let A be an algebra. Suppose that A is closed under countable increasing unions, i.e., U_{j=1}[∞] E_j ∈ A whenever E_j ∈ A and E_j ⊂ E_{j+1} for each j ∈ N. Prove that A is a σ-algebra.
- 5. Let (X, \mathcal{M}, μ) be a measure space.
 - (a) (Inclusion-Exclusion, Folland 1.9)
 If E, F ∈ M, then μ(E ∪ F) = μ(E) + μ(F) μ(E ∩ F).
 (b) (Restricting a measure to a subset, Folland 1.10)
 Given a set E ∈ M, define μ_E(A) = μ(A ∩ E) for A ∈ M. Prove that μ_E is a measure.

6. (Folland 1.8) Let (X, \mathcal{M}, μ) be a measure space, and consider a sequence $(E_j)_{j\geq 1}$ in \mathcal{M} . Define

$$\liminf E_j = \bigcup_{k=1}^{\infty} \bigcap_{j=k}^{\infty} E_j, \qquad \limsup E_j = \bigcap_{k=1}^{\infty} \bigcup_{j=k}^{\infty} E_j.$$

(a) Show that

 $\liminf E_j = \{x \mid x \in E_j \text{ for all but finitely many } j\},\\ \limsup E_j = \{x \mid x \in E_j \text{ for infinitely many } j\}.$

Conclude that $\liminf E_j \subset \limsup E_j$.

(b) Give an example of a sequence (E_j) where $\liminf E_j \neq \limsup E_j$.

(c) Show that $\mu(\liminf E_j) \leq \liminf \mu(E_j)$.

If $\mu(\bigcup_{j=1}^{\infty} E_j) < \infty$, then also $\mu(\limsup E_j) \ge \limsup \mu(E_j)$.