MAT137 - Calculus with proofs

- Test 3 opens on February 5.

Unit 9: Integration methods

- TODAY: Substitution or وluЯ nísतつ (Videos 9.1, 9.3; Supplementary: 9.2)
- NEXT: Parts or وluЯ touborq
(Video: 9.4; Supplementary: 9.5, 9.6)
- WEDNESDAY: Products of trig functions (Video: 9.7; Supplementary: 9.8, 9.9)
- FRIDAY: Rational functions
(Video: 9.10; Supplementary: 9.11, 9.12)

Computation practice: integration by substitution

Use substitutions to compute:

1. $\int \frac{\sin \sqrt{x}}{\sqrt{x}} d x$
2. $\int e^{x} \cos \left(e^{x}\right) d x$
3. $\int \cot x d x$
4. $\int x^{2} \sqrt{x+1} d x$
5. $\int \frac{e^{2 x}}{\sqrt{e^{x}+1}} d x$
6. $\int \frac{(\ln \ln x)^{2}}{x \ln x} d x$
7. $\int x e^{-x^{2}} d x$
8. $\int e^{-x^{2}} d x$

Definite integral via substitution

This final answer is right, but the write-up is WRONG. Why?
Calculate $I=\int_{0}^{2} \sqrt{x^{3}+1} x^{2} d x$

Wrong answer

Substitution: $u=x^{3}+1, d u=3 x^{2} d x$.

$$
\begin{aligned}
I & =\frac{1}{3} \int_{0}^{2} \sqrt{x^{3}+1}\left(3 x^{2} d x\right) & & =\frac{1}{3} \int_{0}^{2} u^{1 / 2} d u \\
& =\left.\frac{1}{3} \frac{2}{3} u^{3 / 2}\right|_{0} ^{2} & & =\left.\frac{1}{9}\left(x^{3}+1\right)^{2 / 3}\right|_{0} ^{2} \\
& =\frac{2}{9}\left(2^{3}+1\right)^{3 / 2}-\frac{2}{9}(0+1)^{3 / 2} & & =\frac{52}{9}
\end{aligned}
$$

Integral of products of sin and cos

We want to compute

$$
I=\int \sin ^{3} x \cos ^{2} x d x
$$

1. Attempt the substitution $u=\sin x$
2. Attempt the substitution $u=\cos x$
3. One worked better than the other. Which one? Why? Finish the problem.
4. Assume we want to compute

$$
\int \sin ^{n} x \cos ^{m} x d x
$$

When will the substitution $u=\sin x$ be helpful? When will the substitution $u=\cos x$ be helpful?

