MAT137 - Calculus with proofs

- Assignment \#6 due on January 28.
- Test 3 opens on February 5.

Unit 9: Integration methods

- FRIDAY: Substitution or وluЯ nínत
(Videos 9.1, 9.3; Supplementary: 9.2)
- MONDAY: Parts or 9luЯ fэubor9 (Videos: 9.4; Supplementary: 9.5, 9.6)
- WEDNESDAY: Products of trig functions (Videos: 9.7; Supplementary: 9.8, 9.9)
- FRIDAY: Rational functions
(Videos: 9.10; Supplementary: 9.11, 9.12)

Compute these definite integrals

1. $\int_{1}^{2} x^{3} d x$
2. $\int_{0}^{1}\left[e^{x}+e^{-x}-\cos (2 x)\right] d x$
3. $\int_{\pi / 4}^{\pi / 3} \sec ^{2} x d x$
4. $\int_{1}^{2}\left[\frac{d}{d x}\left(\frac{\sin ^{2} x}{1+\arctan ^{2} x+e^{-x^{2}}}\right)\right] d x$

Areas

Calculate the area of the bounded region...

1. ... between the x-axis and $y=4 x-x^{2}$.
2. ... between $y=\sin x$ and the x-axis, from $x=0$ to

$$
x=2 \pi
$$

3. \ldots between $y=x^{2}+3$ and $y=3 x+1$.
4. ... between $y=1$, the y-axis, and $y=\ln (x+1)$.

More True or False

We want to find a function H with domain \mathbb{R} such that $H(1)=-2$ and such that $H^{\prime}(x)=e^{\sin x}$ for all x. Decide whether each of the following statements is true or false.

1. The function $\quad H(x)=\int_{0}^{x} e^{\sin t} d t \quad$ is a solution.
2. $\forall C \in \mathbb{R}$, the function $\quad H(x)=\int_{0}^{x} e^{\sin t} d t+C \quad$ is a solution.
3. $\exists C \in \mathbb{R}$ s.t. the function $\quad H(x)=\int_{0}^{x} e^{\sin t} d t+C \quad$ is a solution.
4. The function $H(x)=\int_{1}^{x} e^{\sin t} d t-2 \quad$ is a solution.
5. There is more than one solution.
