MAT137 - Calculus with proofs

- Assignment #6 due on January 28.
- Test 3 on February 5.

• Today: Antiderivatives and functions defined as integrals.

• MONDAY: The Fundamental Theorem of Calculus -Part 1 (Videos 8.3, 8.4)

The most misunderstood antiderivative

- 1. Find the *domain* and the derivative of $F_1(x) = \ln x$
- 2. Find the *domain* and the derivative of $F_2(x) = \ln(-x)$
- 3. Find the *domain* and the derivative of $F_3(x) = \ln |x|$ Suggestion: Break the domain into two pieces.

4. Based on your answers, what is
$$\int \frac{1}{x} dx$$
?

5. Find the *domain* and the derivative of $F_4(x) = \ln |2x|$ Why doesn't this contradict your answer to 4 ?

Functions defined by integrals

Which ones of these are valid ways to define functions?

1.
$$F(x) = \int_0^x \frac{t}{1+t^8} dt$$
 5. $F(x) = \int_{\sin x}^{e^x} \frac{t}{1+t^8} dt$

2.
$$F(x) = \int_0^x \frac{x}{1+x^8} dx$$

6.
$$F(x) = \int_0^3 \frac{t}{1+x^2+t^8} dt$$

7.
$$F(x) = x \int_{\sin x}^{e^x} \frac{t}{1 + x^2 + t^8} dt$$

8.
$$F(x) = t \int_{\sin x}^{e^x} \frac{t}{1 + x^2 + t^8} dt$$

2.
$$F(x) = \int_0^x \frac{x}{1+x^8} dx$$

3.
$$F(x) = \int_0^x \frac{x}{1+t^8} dt$$

4.
$$F(x) = \int_0^{x^2} \frac{t}{1+t^8} dt$$

Towards FTC (continued)

Call $F(x) = \int_0^x f(t) dt$. This is a new function.

- Sketch the graph of y = F(x).
- Using the graph you just sketched, sketch the graph of y = F'(x).

Compute these antiderivatives by guess 'n check

1.
$$\int x^5 dx$$

2.
$$\int (3x^8 - 18x^5 + 1) dx$$

3.
$$\int \sqrt[3]{x} dx$$

4.
$$\int \frac{1}{x^9} dx$$

5.
$$\int \sqrt{x} (x^2 + 5) dx$$

6.
$$\int \frac{1}{e^{2x}} dx$$

7.
$$\int \sin(3x) dx$$

8.
$$\int \cos(3x + 2) dx$$

9.
$$\int \sec^2 x dx$$

10.
$$\int \sec x \tan x dx$$

11.
$$\int \frac{1}{x} dx$$

12.
$$\int \frac{1}{x + 3} dx$$