MAT137 - Calculus with proofs

- Today: Integrals as limit
- FRIDAY: Antiderivatives and functions defined as integrals (Videos 8.1, 8.2)
lower sums
upper sums

finer partitions
finer partitions

An alternative definition

Recall

Let $A \subseteq \mathbb{R}$. The supremum of A as the only real number S such that...

- S is an upper bound of A.
- $\forall \varepsilon>0, \quad \exists x \in A$ such that $S-\varepsilon<x$.

Complete the following alternative definition of lower integral:
Let f be a bounded function on the interval $[a, b]$.
$l_{a}^{b}(f)$ is the only real number that satisfies these two properties:

1. \forall partition P of $[a, b], \ldots$
2. $\forall \varepsilon>0, \ldots$

Do the same thing for upper integral.

The norm of a partition

1. Construct a partition P of $[0,1]$ such that $\|P\|=\frac{\pi}{10}$.
2. Construct a sequence of partitions of $[0,1]$

$$
P_{1}, P_{2}, P_{3}, \ldots
$$

as simple as possible, such that $\lim _{n \rightarrow \infty}\left\|P_{n}\right\|=0$.
3. Construct a different sequence of partitions of $[0,1]$

$$
Q_{1}, Q_{2}, Q_{3}, \ldots
$$

such that $\lim _{n \rightarrow \infty}\left\|Q_{n}\right\|=0$.

Compute $\int_{1}^{2} x^{2} d x$ using Riemann sums

Let $f(x)=x^{2}$ on [1, 2]. Let P_{n} be the partition that breaks [1, 2] into n subintervals of equal length.

1. Write a explicit formula for P_{n}.
2. What is Δx_{i} ?
3. Write the Riemann sum $S_{P_{n}}^{*}(f)$ with sigma notation (choose x_{i}^{*} as the right endpoint).
4. Add the sum
5. Compute $\lim _{n \rightarrow \infty} S_{P_{n}}^{*}(f)$.
6. Repeat the last 3 questions when we choose x_{i}^{*} as the left endpoint.

Helpful identities: $\quad \sum_{i=1}^{N} i=\frac{N(N+1)}{2}, \quad \sum_{i=1}^{N} i^{2}=\frac{N(N+1)(2 N+1)}{6}$

Example 2

Consider the function f defined on $[0,1]$:

$$
f(x)= \begin{cases}1 / 2 & \text { if } 0 \leq x<1 / 2 \\ 1 & \text { if } 1 / 2 \leq x \leq 1 \text { and } x \in \mathbb{Q} \\ 0 & \text { if } 1 / 2 \leq x \leq 1 \text { and } x \notin \mathbb{Q}\end{cases}
$$

1. Draw a picture!
2. Let $P=\{0,0.2,0.4,0.6,0.8,1\}$. Calculate $L_{P}(f)$ and $U_{P}(f)$.
3. Construct a partition P s.t. $L_{P}(f)=.24$ and $U_{P}(f)=.76$
4. What is the upper integral, $\overline{I_{0}^{1}}(f)$?
5. What is the lower integral, $I_{0}^{1}(f)$?

6 . Is f integrable on $[0,1]$?

