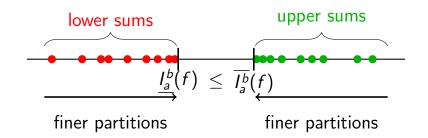
MAT137 - Calculus with proofs

- Today: Examples and properties of the integral
- WEDNESDAY: Integrals as limits (Videos 7.9, 7.10)



Properties of the integral

Assume we know the following

$$\int_0^2 f(x) dx = 3, \qquad \int_0^4 f(x) dx = 9, \qquad \int_0^4 g(x) dx = 2.$$

Compute:

1.
$$\int_{0}^{2} f(t)dt$$

2.
$$\int_{0}^{2} f(x)dx$$

3.
$$\int_{0}^{2} f(t)dx$$

4.
$$\int_{2}^{0} f(x)dx$$

5.
$$\int_{2}^{4} f(x) dx$$

6. $\int_{-2}^{0} f(x) dx$
7. $\int_{0}^{4} [f(x) - 2g(x)] dx$

Example 1

Consider the function $f(x) = \begin{cases} 0 & x = 0 \\ 5 & 0 < x \le 1 \end{cases}$ defined on [0, 1].

1. Let
$$P = \{0, 0.2, 0.5, 0.9, 1\}$$
.
Calculate $L_P(f)$ and $U_P(f)$ for this partition.

- 2. Fix an arbitrary partition $P = \{x_0, x_1, \dots, x_N\}$ of [0, 1]. What is $U_P(f)$? What is $L_P(f)$? (Draw a picture!)
- 3. Find a partition P with exactly 3 points (2 subintervals) such that $L_P(f) = 4.99$.
- 4. What is the upper integral, $\overline{I_0^1}(f)$?
- 5. What is the lower integral, $I_0^1(f)$?
- 6. Is f integrable on [0, 1]?

Finer partitions

Let f be a bounded function on [a, b]. Let P and Q be partitions of [a, b]. Which of these implications are true?

1. IF $P \subseteq Q$, THEN $L_P(f) \leq L_Q(f)$ 2. IF $P \subset Q$, THEN $L_P(f) < L_Q(f)$ 3. IF $L_P(f) \leq L_Q(f)$, THEN $P \subseteq Q$ 4. IF $L_P(f) < L_Q(f)$, THEN $P \subset Q$ 5. IF $L_P(f) < L_Q(f)$, THEN $Q \not\subseteq P$

Recall

Let $A \subseteq \mathbb{R}$. The supremum of A as the only real number S such that...

- *S* is an upper bound of *A*.
- $\forall \varepsilon > 0$, $\exists x \in A$ such that $S \varepsilon < x$.

Complete the following alternative definition of lower integral:

Let f be a bounded function on the interval [a, b]. $\underline{I_a^b}(f)$ is the only real number that satisfies these two properties: 1. \forall partition P of [a, b], ... 2. $\forall \varepsilon > 0$, ...

Do the same thing for upper integral.