MAT137 - Calculus with proofs

- Today: Definition of the integral
- MONDAY: Examples and properties of the integral (Videos 7.7, 7.8, 7.11)

Equivalent definitions of supremum

Assume S is an upper bound of the set A. Which of the following is equivalent to "S is the supremum of A"?

- 1. If R is an upper bound of A, then $S \leq R$.
- 2. $\forall R \geq S$, R is an upper bound of A.
- 3. $\forall R \leq S$, R is not an upper bound of A.
- 4. $\forall R < S$, R is not an upper bound of A.
- 5. $\forall R < S$, $\exists x \in A$ such that R < x.
- 6. $\forall R < S$, $\exists x \in A$ such that $R \leq x$.
- 7. $\forall R < S$, $\exists x \in A$ such that $R < x \leq S$.
- 8. $\forall R < S$, $\exists x \in A$ such that R < x < S.
- 9. $\forall \varepsilon > 0$, $\exists x \in A$ such that $S \varepsilon < x$. 10. $\forall \varepsilon > 0$, $\exists x \in A$ such that $S - \varepsilon < x \le S$.

Equivalent or not?

Let $A \subseteq \mathbb{R}$. Let $S \in \mathbb{R}$.

(A) $\exists x \in A$ such that 2 < x

(B) $\exists x \in A$ such that $2 \leq x$

Does (A) imply (B)?
Does (B) imply (A)?

(C)
$$\forall R < S$$
, $\exists x \in A$ such that $R < x$

(D) $\forall R < S$, $\exists x \in A$ such that $R \leq x$

3. Does (C) imply (D)?
4. Does (D) imply (C)?

Warm up: partitions

Which ones are partitions of [0, 2]?

- 1. [0, 2]
- 2. $\{0.5, 1, 1.5\}$
- **3**. {0, 2}
- 4. $\{1, 2\}$
- 5. $\{0, e, 2\}$
- $\textbf{6.} \hspace{0.1 in} \{0, \hspace{0.1 in} 1.5, \hspace{0.1 in} 1.6, \hspace{0.1 in} 1.7, \hspace{0.1 in} 1.8, \hspace{0.1 in} 1.9, \hspace{0.1 in} 2\}$
- 7. $\left\{\frac{n}{n+1} : n \in \mathbb{N}\right\} \cup \{2\}$

Warm up: lower and upper sums

Let $f(x) = \sin x$.

Consider the partition $P = \{0, 1, 3\}$ of the interval [0, 3]. Calculate $L_P(f)$ and $U_P(f)$.

Equations for lower and upper sums

Let f be a **decreasing**, bounded function on [a, b]. Let $P = \{x_0, x_1, \dots, x_N\}$ be a partition of [a, b]

Which ones are a valid equation for $L_P(f)$? For $U_P(f)$?

Recall: $\Delta x_i = x_i - x_{i-1}$.

Joining partitions

Assume

$$L_P(f) = 2, \quad U_P(f) = 6$$

 $L_Q(f) = 3, \quad U_Q(f) = 8$

- 1. Is $P \subseteq Q$?
- 2. Is $Q \subseteq P$?
- 3. What can you say about $L_{P\cup Q}(f)$ and $U_{P\cup Q}(f)$?

A tricky question

Let f be a bounded function on [a, b]. Which statement is true? 1. There exists a partition P of [a, b] such that

$$I^b_a(f) = L_P(f)$$
 and $\overline{I^b_a}(f) = U_P(f).$

2. There exist partitions P and Q of [a, b] such that

$$\underline{I_a^b}(f) = L_P(f)$$
 and $\overline{I_a^b}(f) = U_Q(f).$

3. There exists a partition P of [a, b] such that

$$\underline{I_a^b}(f) = L_P(f).$$

