MAT137 - Calculus with proofs

- Today: Definition of the integral
- MONDAY: Examples and properties of the integral (Videos 7.7, 7.8, 7.11)

Equivalent definitions of supremum

Assume S is an upper bound of the set A.
Which of the following is equivalent to " S is the supremum of A "?

1. If R is an upper bound of A, then $S \leq R$.
2. $\forall R \geq S, \quad R$ is an upper bound of A.
3. $\forall R \leq S, \quad R$ is not an upper bound of A.
4. $\forall R<S, \quad R$ is not an upper bound of A.
5. $\forall R<S, \exists x \in A$ such that $R<x$.
6. $\forall R<S, \exists x \in A$ such that $R \leq x$.
7. $\forall R<S, \exists x \in A$ such that $R<x \leq S$.
8. $\forall R<S, \exists x \in A$ such that $R<x<S$.
9. $\forall \varepsilon>0, \quad \exists x \in A$ such that $S-\varepsilon<x$.
10. $\forall \varepsilon>0, \quad \exists x \in A$ such that $S-\varepsilon<x \leq S$.

Equivalent or not?

Let $A \subseteq \mathbb{R}$. Let $S \in \mathbb{R}$.
(A) $\exists x \in A$ such that $2<x$
(B) $\exists x \in A$ such that $2 \leq x$

1. Does (A) imply (B)?
2. Does (B) imply (A) ?
(C) $\forall R<S, \exists x \in A$ such that $R<x$
(D) $\forall R<S, \exists x \in A$ such that $R \leq x$
3. Does (C) imply (D)?
4. Does (D) imply (C)?

Warm up: partitions

Which ones are partitions of $[0,2]$?

1. $[0,2]$
2. $\{0.5,1,1.5\}$
3. $\{0,2\}$
4. $\{1,2\}$
5. $\{0, e, 2\}$
6. $\{0,1.5,1.6,1.7,1.8,1.9,2\}$
7. $\left\{\frac{n}{n+1}: n \in \mathbb{N}\right\} \cup\{2\}$

Warm up: lower and upper sums

Let $f(x)=\sin x$.
Consider the partition $P=\{0,1,3\}$ of the interval $[0,3]$.
Calculate $L_{P}(f)$ and $U_{P}(f)$.

Equations for lower and upper sums

Let f be a decreasing, bounded function on $[a, b]$. Let $P=\left\{x_{0}, x_{1}, \ldots, x_{N}\right\}$ be a partition of $[a, b]$

Which ones are a valid equation for $L_{P}(f)$? For $U_{P}(f)$?

$$
\begin{array}{lll}
\text { 1. } \sum_{i=0}^{N} f\left(x_{i}\right) \Delta x_{i} & \text { 3. } \sum_{i=0}^{N-1} f\left(x_{i}\right) \Delta x_{i} & \text { 5. } \sum_{i=1}^{N} f\left(x_{i-1}\right) \Delta x_{i} \\
\text { 2. } \sum_{i=1}^{N} f\left(x_{i}\right) \Delta x_{i} & \text { 4. } \sum_{i=1}^{N} f\left(x_{i+1}\right) \Delta x_{i} & \text { 6. } \sum_{i=0}^{N-1} f\left(x_{i}\right) \Delta x_{i+1}
\end{array}
$$

Recall: $\Delta x_{i}=x_{i}-x_{i-1}$.

Joining partitions

Assume

$$
\begin{array}{ll}
L_{P}(f)=2, & U_{P}(f)=6 \\
L_{Q}(f)=3, & U_{Q}(f)=8
\end{array}
$$

1. Is $P \subseteq Q$?
2. Is $Q \subseteq P$?
3. What can you say about $L_{P \cup Q}(f)$ and $U_{P \cup Q}(f)$?

A tricky question

Let f be a bounded function on $[a, b]$. Which statement is true?

1. There exists a partition P of $[a, b]$ such that

$$
\underline{l_{a}^{b}}(f)=L_{P}(f) \quad \text { and } \quad \overline{l_{a}^{b}}(f)=U_{P}(f)
$$

2. There exist partitions P and Q of $[a, b]$ such that

$$
\underline{l_{a}^{b}}(f)=L_{P}(f) \quad \text { and } \quad \overline{l_{a}^{b}}(f)=U_{Q}(f)
$$

3. There exists a partition P of $[a, b]$ such that

$$
\underline{I_{a}^{b}}(f)=L_{P}(f)
$$

upper sums

