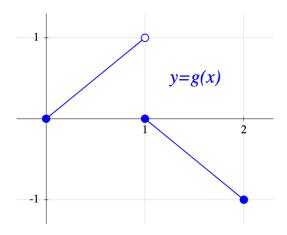
MAT137 - Calculus with proofs

• Assignment #6 due on January 28.

• Today: Suprema and infima.

• FRIDAY: Definition of integral (Videos 7.5, 7.6)

Warm up: suprema and infima


Find the supremum, infimum, maximum, and minimum of the following sets (if they exist):

1. [-1,5)2. $(-\infty, 6] \cup (8, 9)$ **3**. $\{2, 3, 4\}$ 4. $\left\{\frac{1}{n}: n \in \mathbb{Z}, n > 0\right\}$ 5. $\left\{\frac{(-1)^n}{n}: n \in \mathbb{Z}, n > 0\right\}$ 6. $\{2^n : n \in \mathbb{Z}\}$

Suprema from a graph

Calculate, for the function g on the interval [0.5, 1.5]:

1. supremum 2. infimum 3. maximum 4. minimum

Empty set

- 1. Does \emptyset have an upper bound ?
- 2. Does \emptyset have a supremum?
- 3. Does \emptyset have a maximum?
- 4. Is \emptyset bounded above?

Equivalent definitions of supremum

Assume S is an upper bound of the set A. Which of the following is equivalent to "S is the supremum of A"?

- 1. If R is an upper bound of A, then $S \leq R$.
- 2. $\forall R \geq S$, R is an upper bound of A.
- 3. $\forall R \leq S$, R is not an upper bound of A.
- 4. $\forall R < S$, R is not an upper bound of A.
- 5. $\forall R < S$, $\exists x \in A$ such that R < x.
- 6. $\forall R < S$, $\exists x \in A$ such that $R \leq x$.
- 7. $\forall R < S$, $\exists x \in A$ such that $R < x \leq S$.
- 8. $\forall R < S$, $\exists x \in A$ such that R < x < S.
- 9. $\forall \varepsilon > 0$, $\exists x \in A$ such that $S \varepsilon < x$. 10. $\forall \varepsilon > 0$, $\exists x \in A$ such that $S - \varepsilon < x \le S$.