MAT137 - Calculus with proofs

- Assignment \#5 due on December 20
- Watch videos 7.1, 7.2 by Monday, January 11. Happy holidays!

Backwards graphing

R is a rational function (a quotient of polynomials).
Find its equation.

Suggestion: Play with desmos.

A very hard function to graph

The function $G(x)=x e^{1 / x}$ is deceiving. To help you out:

$$
G^{\prime}(x)=\frac{x-1}{x} e^{1 / x}, \quad G^{\prime \prime}(x)=\frac{e^{1 / x}}{x^{3}}
$$

1. Carefully study the behaviour as $x \rightarrow 0^{+}$and $x \rightarrow 0^{-}$. The two are very different.
2. Carefully study the behaviour as $x \rightarrow \pm \infty$. You should find an asymptote, but it is not easy.
3. Use G^{\prime} to study monotonocity.
4. Use $G^{\prime \prime}$ to study concavity.
5. Sketch the graph of G.

Come to the dark side

Help me write a difficult question for Test 3! I will ask you to compute a limit like this

$$
\lim _{x \rightarrow 0} \frac{e^{x}+e^{-x}-2 \cos x+? ? ?}{x^{?}}
$$

I have not decided yet what to put instead of the question marks, but I do not want it to look too scary.

I want the calculation to require 6 iterations of L'Hôpital's Rule.
I do not want the answer to be 0 or ∞ or $-\infty$ or "DNE", because you could guess that answer.

What limit should I ask? And what will the answer be?

A polynomial from 3 points

Construct a polynomial that satisfies the following three properties at once:

1. It has an inflection point at $x=2$
2. It has a a local extremum at $x=1$
3. It has y-intercept at $y=1$.

Fractional exponents

Let $h(x)=\frac{x^{2 / 3}}{(x-1)^{2 / 3}}$. Its first two derviatives are

$$
h^{\prime}(x)=\frac{-2}{3 x^{1 / 3}(x-1)^{5 / 3}} \quad h^{\prime \prime}(x)=\frac{2(6 x-1)}{9 x^{4 / 3}(x-1)^{8 / 3}}
$$

1. Find all asymptotes of h
2. Study the monotonicity of h and local extrema
3. Study the concavity of h and inflection points
4. With this information, sketch the graph of h
