MAT137 - Calculus with proofs

- Assignment \#5 due on December 20
- TODAY: Concavity
- WEDNESDAY: Asymptotes
- Watch videos 6.15, 6.16, 6.17
- Supplementary video: 6.18
- THURSDAY: Curve sketching (no videos)

Critique this solution:

- Let f be a function with domain \mathbb{R}.
- Assume that $f(0)=0$ and that f is differentiable at 0 .
- Calculate $\lim _{x \rightarrow 0} \frac{f(x)}{\sqrt[3]{x}}$.

"Solution"

It is an indeterminate form $0 / 0$, so I use L'Hôpital's Rule:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{f(x)}{\sqrt[3]{x}} & =\lim _{x \rightarrow 0} \frac{f^{\prime}(x)}{\frac{1}{3} x^{-2 / 3}} \\
& =\lim _{x \rightarrow 0}\left[3 x^{2 / 3} f^{\prime}(x)\right] \\
& =3 \cdot 0 \cdot f^{\prime}(0)=0
\end{aligned}
$$

Find the coordinates of P and Q

$$
g(x)=x^{4}-6 x^{2}+9
$$

True or False - Concavity and inflection points

Let f be a differentiable function with domain \mathbb{R}.
Let $c \in \mathbb{R}$. Let $/$ be an interval. Which implications are true?

1. IF f is concave up on I, \quad THEN $\forall x \in I, f^{\prime \prime}(x)>0$.
2. IF $\forall x \in I, f^{\prime \prime}(x)>0$, THEN f is concave up on l.
3. IF f is concave up on l THEN f^{\prime} is increasing on l.
4. IF f^{\prime} is increasing on l, THEN f is concave up on l.
5. IF f has an I.P. at $c, \operatorname{THEN} f^{\prime \prime}(c)=0$.
6. IF $f^{\prime \prime}(c)=0, \quad$ THEN f has an I.P. at c.
7. IF f has an I.P. at $c, \operatorname{THEN} f^{\prime}$ has a local extremum at c
8. IF f^{\prime} has a local extremum at c, THEN f has an I.P. at c.
I.P. = "inflection point"

Monotonicity and concavity

Let $f(x)=x e^{-x^{2} / 2}$.

1. Find the intervals where f is increasing or decreasing, and its local extrema.
2. Find the intervals where f is concave up or concave down, and its inflection points.
3. Calculate $\lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow-\infty} f(x)$.
4. Using this information, sketch the graph of f.
