## MAT137 - Calculus with proofs

- Assignment \#4 due on November 26
- Test 2 opens on December 4
- Assignment \#5 due on December 20
- TODAY: Monotonicity
- FRIDAY: Related Rates
- MONDAY: Optimization
(Videos 6.1, 6.2)
(Videos 6.3, 6.4)


## Definition of increasing

Let $f$ be the function defined by $f(x)=x^{3}$. Which ones of these statements are TRUE?

1. $f$ is increasing on $(0, \infty)$.
2. $f$ is increasing on $[0, \infty)$.
3. $f$ is increasing on $(-\infty, 0)$.
4. $f$ is increasing on $(-\infty, 0]$.
5. $f$ is increasing on $(-\infty, 0)$ and on $(0, \infty)$.
6. $f$ is increasing on $(-\infty, 0]$ and on $[0, \infty)$.
7. $f$ is increasing on $\mathbb{R}$.
8. $f$ is increasing on $[1,2]$.

## True or False - AGAIN

Let I be an OPEN interval.
Let $f$ be a function defined on $l$.
Let $c \in I$. Which implications are true?

1. IF $f$ is increasing on $I, \quad$ THEN $\forall x \in I, f^{\prime}(x)>0$.
2. IF $\forall x \in I, f^{\prime}(x)>0$, THEN $f$ is increasing on $I$.
3. IF $f$ has a local extremum at $c$, THEN $f^{\prime}(c)=0$.
4. IF $f^{\prime}(c)=0$, THEN $f$ has a local extremum at $c$.

## Preparation

1. Let $f$ be a function defined on an interval $l$. Write the definition of " $f$ is increasing on $I$ ".
2. Write the statement of the Mean Value Theorem.

## Positive derivative implies increasing

## Use the MVT to prove

## Theorem

Let $a<b$. Let $f$ be a differentiable function on $(a, b)$.

- IF $\forall x \in(a, b), f^{\prime}(x)>0$,
- THEN $f$ is increasing on $(a, b)$.

1. Recall the definition of what you are trying to prove.
2. From that definition, figure out the structure of the proof.
3. If you have used a theorem, did you verify the hypotheses?
4. Are there words in your proof, or just equations?

## What is wrong with this proof?

## Theorem

Let $a<b$. Let $f$ be a differentiable function on $(a, b)$.

- IF $\forall x \in(a, b), f^{\prime}(x)>0$,
- THEN $f$ is increasing on $(a, b)$.


## Proof.

- From the MVT, $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$
- We know $b-a>0$ and $f^{\prime}(c)>0$
- Therefore $f(b)-f(a)>0$. Thus $f(b)>f(a)$.
- $f$ is increasing.


## Inequalities

Prove that, for every $x \in \mathbb{R}, \quad e^{x} \geq 1+x$.
Hint: Where is the function $f(x)=e^{x}-1-x$ increasing or decreasing? What is its minimum?

