MAT137 - Calculus with proofs

- Assignment \#4 due on November 26
- Test 2 opens on December 4
- Assignment \#5 due on December 20
- TODAY: Rolle's Theorem
- MONDAY: MVT
(Videos 5.7, 5.8, 5.9)

True or False - Local extrema

Let I be an interval. Let f be a function defined on I. Let $c \in I$. Which implications are true?

1. IF f has local extremum at c, THEN f has an extremum at c
2. IF f has an extremum at c, THEN f has local extremum at c
3. IF f has a local extremum at c, THEN $f^{\prime}(c)=0$.
4. IF $f^{\prime}(c)=0$, THEN f has a local extremum at c.

Local extrema - The correct implications

1. extremum \Longrightarrow local extremum OR

2. local extremum \Longrightarrow derivative is 0 OR

How many zeroes?

Let $\quad f(x)=e^{x}-\sin x+x^{2}+10 x$. How many zeroes does f have?

The second Theorem of Rolle

Complete statement for this theorem and prove it.

Rolle's Theorem 2

Let $a<b$. Let f be a function defined on $[a, b]$.
IF

- (Some conditions on continuity and derivatives)
- $f(a)=f^{\prime}(a)=0$
- $f(b)=0$

THEN $\exists c \in(a, b)$ such that $f^{\prime \prime}(c)=0$.
Hint: Apply the 1st Rolle's Theorem to f, then do something else.

