MAT137 - Calculus with proofs

- Assignment \#4 due on November 26
- Test 2 opens on December 4
- Assignment \#5 due on December 20
- TODAY: Local extrema
- FRIDAY: Rolle's Theorem
(Videos 5.5, 5.6)
- MONDAY: MVT
(Videos 5.7, 5.8, 5.9)

Definition of local extremum

Find local and global extrema of the function with this graph:

Where is the maximum?

We know the following about the function h :

- The domain of h is $(-4,4)$.
- h is continuous on its domain.
- h is differentiable on its domain, except at 0 .
- $h^{\prime}(x)=0 \quad \Longleftrightarrow \quad x=-1$ or 1 .

What can you conclude about the maximum of h ?

1. h has a maximum at $x=-1$, or 1 .
2. h has a maximum at $x=-1,0$, or 1 .
3. h has a maximum at $x=-4,-1,0,1$, or 4 .
4. None of the above.

Fractional exponents

Let $g(x)=x^{2 / 3}(x-1)^{3}$.
Find local and global extrema of g on $[-1,2]$.

Computations - Inverse trig functions

Compute the derivatives of these functions, and simplify them as much as possible:

1. $f(x)=\arcsin \left(x^{3 / 2}\right)$
2. $f(x)=2 x^{2} \arctan \left(x^{2}\right)-\ln \left(x^{4}+1\right)$
