MAT137 - Calculus with proofs

- Assignment #3 due on November 5
- Assignment #4 due on November 26

• TODAY: Functions and inverse functions

- FRIDAY: Exponentials and logarithms
 - Watch videos 4.5, 4.7, 4.8, 4.9
 - Supplementary videos: 4.6, 4.10, 4.11

Assume that f is an invertible function. Fill in the blanks.

- 1. If f(-1) = 0, then $f^{-1}(___) = ___$.
- 2. If $f^{-1}(2) = 1$, then $f(___) = ___$.
- 3. If (2,3) is on the graph of f, then _____ is on the graph of f^{-1} .
- 4. If (2,3) is on the graph of f^{-1} , then _____ is on the graph of f.

Where is the error?

• We know that $(f^{-1})' = \frac{1}{f'}$

• Let $f(x) = x^2$, restricted to the domain $x \in (0,\infty)$

$$f'(x) = 2x$$
 and $f'(4) = 8$

• Then
$$f^{-1}(x) = \sqrt{x}$$

$$(f^{-1})'(x) = \frac{1}{2\sqrt{x}}$$
 and $(f^{-1})'(4) = \frac{1}{4}$

• But
$$(f^{-1})'(4) \neq \frac{1}{f'(4)}$$

Derivatives of the inverse function

Let f be a one-to-one function. Let $a, b \in \mathbb{R}$ such that b = f(a).

- 1. Obtain a formula for $(f^{-1})'(b)$ in terms of f'(a). *Hint:* This appeared in Video 4.4 Take $\frac{d}{dy}$ of both sides of $f(f^{-1}(y)) = y$.
- 2. Obtain a formula for $(f^{-1})''(b)$ in terms of f'(a) and f''(a).
- 3. Challenge: Obtain a formula for $(f^{-1})'''(b)$ in terms of f'(a), f''(a), and f'''(a).

Assume for simplicity that all functions in this problem have domain $\mathbb R.$ Prove the following theorem.

Theorem A

Let f and g be functions. IF f and g are one-to-one, THEN $f \circ g$ is one-to-one.

Suggestion:

- 1. Write the definition of what you want to prove.
- 2. Figure out the formal structure of the proof.
- 3. Complete the proof (use the hypotheses!)