MAT137 - Calculus with proofs

- Assignment \#3 due on November 5
- Assignment \#4 due on November 26
- TODAY: Functions and inverse functions
- FRIDAY: Exponentials and logarithms
- Watch videos 4.5, 4.7, 4.8, 4.9
- Supplementary videos: 4.6, 4.10, 4.11

Fill in the Blanks

Assume that f is an invertible function. Fill in the blanks.

1. If $f(-1)=0$, then $f^{-1}(\square)=$
2. If $f^{-1}(2)=1$, then $f(\square)=$ \qquad .
3. If $(2,3)$ is on the graph of f, then \qquad is on the graph of f^{-1}.
4. If $(2,3)$ is on the graph of f^{-1}, then \qquad the graph of f.

Where is the error?

- We know that $\left(f^{-1}\right)^{\prime}=\frac{1}{f^{\prime}}$
- Let $f(x)=x^{2}$, restricted to the domain $x \in(0, \infty)$

$$
f^{\prime}(x)=2 x \quad \text { and } \quad f^{\prime}(4)=8
$$

- Then $f^{-1}(x)=\sqrt{x}$

$$
\left(f^{-1}\right)^{\prime}(x)=\frac{1}{2 \sqrt{x}} \quad \text { and } \quad\left(f^{-1}\right)^{\prime}(4)=\frac{1}{4}
$$

- But $\left(f^{-1}\right)^{\prime}(4) \neq \frac{1}{f^{\prime}(4)}$

Derivatives of the inverse function

Let f be a one-to-one function.
Let $a, b \in \mathbb{R}$ such that $b=f(a)$.

1. Obtain a formula for $\left(f^{-1}\right)^{\prime}(b)$ in terms of $f^{\prime}(a)$.

Hint: This appeared in Video 4.4
Take $\frac{d}{d y}$ of both sides of $\quad f\left(f^{-1}(y)\right)=y$.
2. Obtain a formula for $\left(f^{-1}\right)^{\prime \prime}(b)$ in terms of $f^{\prime}(a)$ and $f^{\prime \prime}(a)$.
3. Challenge: Obtain a formula for $\left(f^{-1}\right)^{\prime \prime \prime}(b)$ in terms of $f^{\prime}(a), f^{\prime \prime}(a)$, and $f^{\prime \prime \prime}(a)$.

Composition of one-to-one functions

Assume for simplicity that all functions in this problem have domain \mathbb{R}. Prove the following theorem.

Theorem A

Let f and g be functions.
IF f and g are one-to-one,
THEN $f \circ g$ is one-to-one.

Suggestion:

1. Write the definition of what you want to prove.
2. Figure out the formal structure of the proof.
3. Complete the proof (use the hypotheses!)
