MAT137 - Calculus with proofs

- Assignment \#3 due on November 5
- TODAY: Trigonometric and implicit differentiation
- MONDAY: Functions and inverse functions
(Videos 4.1, 4.2)

Warm up: computations

Compute the derivatives of the following functions:

1. $f(x)=\cos (\sin (\tan x))$
2. $f(x)=\cos \left(3 x+\sqrt{1+\sin ^{2} x^{2}}\right)$
3. $f(x)=(\cos x)(\sin 2 x)(\tan 3 x)$

A pesky function

Let $h(x)=\left\{\begin{array}{ll}x^{2} \sin \frac{1}{x} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{array}\right.$.

1. Calculate $h^{\prime}(x)$ for any $x \neq 0$.
2. Using the definition of derivative, calculate $h^{\prime}(0)$.
3. Calculate $\lim _{x \rightarrow 0} h^{\prime}(x)$

Hint: Questions 2 and 3 have different answers.
4. Is h continuous at 0 ?
5. Is h differentiable at 0 ?
6. Is h^{\prime} continuous at 0 ?

Implicit differentiation

The equation

$$
\sin (x+y)+x y^{2}=0
$$

defines a function $y=h(x)$ near $(0,0)$. Using implicit differentiation, compute

$$
\text { 1. } h(0) \quad \text { 2. } h^{\prime}(0) \quad \text { 3. } h^{\prime \prime}(0) \quad \text { 4. } h^{\prime \prime \prime}(0)
$$

