MAT137 - Calculus with proofs

- Assignment \#3 due on November 5
- TODAY: Chain Rule
- FRIDAY: Trig and implicit diferentiation (Videos 3.12, 3.13)
- MONDAY: Functions and inverse functions
(Videos 4.1, 4.2)

Quick composition

Let f and g be differentiable functions and let $h=f \circ g$. What is $h^{\prime}(2)$?

1. $f^{\prime}(2) \circ g^{\prime}(2)$
2. $f^{\prime}(2) g^{\prime}(2)$
3. $f^{\prime}(g(2)) \circ g^{\prime}(2)$
4. $f^{\prime}(g(2)) g^{\prime}(2)$
5. $f^{\prime} \circ g^{\prime}(2)$
6. $f^{\prime}\left(g^{\prime}(2)\right)$
7. $f^{\prime}(g(x)) g^{\prime}(2)$
8. $f^{\prime}(g(x)) \circ g^{\prime}(2)$

True or False - Differentiability and Composition

Let f and g be functions with domain \mathbb{R}. Let $c \in \mathbb{R}$.
Assume f and g are differentiable at c.
What can we conclude?

1. $f \circ g$ is differentiable at c.
2. $f \circ f$ is differentiable at c.
3. $f \circ \sin$ is differentiable at c.
4. \sin of is differentiable at c.

Computations: Chain rule

Compute the derivative of

$$
\begin{aligned}
& \text { 1. } f(x)=\left(2 x^{2}+x+1\right)^{8} \\
& \text { 2. } f(x)=\frac{1}{\left(x+\sqrt{x^{2}+x}\right)^{137}}
\end{aligned}
$$

Estimations - 4

Without using a calculator, estimate $\sqrt[20]{1.01}$.
Hint: You know the value of $f(x)=\sqrt[20]{x}$ and its derivative at one point very close to 1.01 . Use the tangent line at that point as an approximation.

Estimations - 5

Let f and g be continuous function with domain \mathbb{R}.
We know $\quad f(0)=0, \quad g(0)=0$,
Estimate $\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}$

Estimations - 6

Let f and g be continuous function with domain \mathbb{R}.
We know $\quad f(0)=0, \quad g(0)=0, \quad f^{\prime}(0)=3, \quad g^{\prime}(0)=5$.

- When x is close to 0 , give estimates for $f(x)$ and $g(x)$ using the tangent lines at 0 .
- Use those estimates to "compute" $\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}$.

Derivatives of $(f \circ g)$

Assume f and g are functions that have all their derivatives. Find formulas for

1. $(f \circ g)^{\prime}(x)$
2. $(f \circ g)^{\prime \prime}(x)$
3. $(f \circ g)^{\prime \prime \prime}(x)$
in terms of the values of f, g and their derivatives.
Hint: The first one is simply the chain rule.
Challenge: Find a formula for $(f \circ g)^{(n)}(x)$
(This is beyond the scope of this course).
