MAT137 - Calculus with proofs

- Assignment \#3 due on November 5
- TODAY: More on differentiation rules
- WEDNESDAY: Chain Rule (Videos 3.10, 3.11)
- FRIDAY: Trig and implicit diferentiation
(Videos 3.12, 3.13)

True or False - Differentiability vs Continuity

Let f be a function with domain \mathbb{R}. Let $c \in \mathbb{R}$. Which of these implications are true?

1. IF f is continuous at c, THEN f is differentiable at c
2. IF f is differentiable at c, THEN f is continuous at c
3. IF f is differentiable at c, $\operatorname{THEN} f^{\prime}$ is continuous at c
4. IF f^{\prime} is continuous at $c, \operatorname{THEN} f$ is continuous at c
5. IF f is differentiable at c, THEN f is continuous at and near c.
6. IF f is continuous at and near $c, \operatorname{THEN} f$ is differentiable at c.

True or False - Differentiability and Operations

Let f be a function with domain \mathbb{R}. Let $c \in \mathbb{R}$. Let $g(x)=f(x)^{2}$. Which of these implications are true?

1. IF f is differentiable at c, THEN $3 f$ is differentiable at c.
2. IF f is differentiable at c, THEN g is differentiable at c.
3. IF g is differentiable at c, THEN f is differentiable at c.
4. IF f is differentiable at c, THEN $f+g$ is differentiable at c.
5. IF f is differentiable at c, THEN $1 / f$ is differentiable at c.

Absolute value and tangent lines

At $(0,0)$ the graph of $y=|x| \ldots$

1. ... has one tangent line: $y=0$
2. ... has one tangent line: $x=0$
3. ... has two tangent lines $y=x$ and $y=-x$
4. ... has no tangent line

Absolute value and derivatives

Let $h(x)=x|x|$. What is $h^{\prime}(0)$?

1. It is 0 .
2. It doesn't exist because $|x|$ is not differentiable at 0 .
3. It doesn't exist because the right- and left-limits, when computing the derivative, are different.
4. It doesn't exist because it has a corner.
5. All of (2), (3), (4) are true.
6. It doesn't exist for a different reason.

Write a proof for the quotient rule for derivatives

Theorem

- Let $a \in \mathbb{R}$.
- Let f and g be functions defined at and near a. Assume $g(x) \neq 0$ for x close to a.
- We define the function h by $h(x)=\frac{f(x)}{g(x)}$.

IF f and g are differentiable at a,
THEN h is differentiable at a, and

$$
h^{\prime}(a)=\frac{f^{\prime}(a) g(a)-f(a) g^{\prime}(a)}{g(a)^{2}} .
$$

Write a proof directly from the definition of derivative. Hint: Imitate the proof of the product rule in Video 3.6.

Check your proof

1. Did you use the definition of derivative?
2. Are there words or only equations?
3. Does every step follow logically?
4. Did you only assume things you could assume?
5. Did you assume at some point that a function was differentiable? If so, did you justify it?
6. Did you assume at some point that a function was continuous? If so, did you justify it?

If you answered "no" to Q6, you probably missed something important.

Critique this proof

$$
\begin{aligned}
h^{\prime}(a) & =\lim _{x \rightarrow a} \frac{h(x)-h(a)}{x-a}=\lim _{x \rightarrow a} \frac{\frac{f(x)}{g(x)}-\frac{f(a)}{g(a)}}{x-a} \\
& =\lim _{x \rightarrow a} \frac{f(x) g(a)-f(a) g(x)}{g(x) g(a)(x-a)} \\
& =\lim _{x \rightarrow a} \frac{f(x) g(a)-f(a) g(a)+f(a) g(a)-f(a) g(x)}{g(x) g(a)(x-a)} \\
& =\lim _{x \rightarrow a}\left\{\left[\frac{f(x)-f(a)}{x-a} g(a)-f(a) \frac{g(x)-g(a)}{x-a}\right] \frac{1}{g(x) g(a)}\right\} \\
& =\left[f^{\prime}(a) g(a)-f(a) g^{\prime}(a)\right] \frac{1}{g(a) g(a)}
\end{aligned}
$$

