MAT137 - Calculus with proofs

- Test 1 is open from 3 pm today to 3 pm Saturday
- Assignment \#3 due on November 5
- TODAY: Differentiation rules
- MONDAY : Proof of differentiation rules
(Videos 3.6, 3.7, 3.9)
- WEDNESDAY: Chain Rule (Videos 3.10, 3.11)

Differentiable functions

Let $a \in \mathbb{R}$.
Let f be a function with domain \mathbb{R}.
Assume f is differentiable everywhere.
What can we conclude?

1. $f(a)$ is defined.
2. $\lim _{x \rightarrow a} f(x)$ exists.
3. f is continuous at a.
4. $f^{\prime}(a)$ exists.
5. $\lim _{x \rightarrow a} f^{\prime}(x)$ exists.
6. f^{\prime} is continuous at a.

Computations: Basic differentiation rules

Compute the derivative of the following functions:

$$
\begin{array}{ll}
\text { 1. } f(x)=x^{100}-3 x^{9}-2 & \text { 4. } f(x)=\sqrt{x}(1+2 x) \\
\text { 2. } f(x)=\sqrt[3]{x}+6 & \text { 5. } f(x)=\frac{x^{6}+1}{x^{3}} \\
\text { 3. } f(x)=\frac{4}{x^{4}} & \text { 6. } f(x)=\frac{x^{2}-2}{x^{2}+2}
\end{array}
$$

Higher order derivatives

Let $g(x)=\frac{1}{x^{3}}$.

- Calculate the first few derivatives.
- Make a conjecture for a formula for the n-th derivative $g^{(n)}(x)$.
- Prove it by induction.

Estimations - 1

Let f be a continuous function with domain \mathbb{R}.
We know $f(4)=3$ and $f(4.2)=2.2$.
Based only on this, give your best estimate for $f(4.1)$.

Estimations - 2

Let f be a continuous function with domain \mathbb{R}.
We know $f(4)=3$ and $f(4.1)=4$.
Based only on this, give your best estimate for $f^{\prime}(4)$.

Estimations - 3

Let f be a continuous function with domain \mathbb{R}.
We know $f(4)=3$ and $f^{\prime}(4)=0.5$.
Based only on this, give your best estimate for $f(4.1)$.

Estimations - 4

Without using a calculator, estimate $\sqrt[20]{1.01}$.
Hint: You know the value of $f(x)=\sqrt[20]{x}$ and its derivative at one point very close to 1.01 . Use the tangent line at that point as an approximation.

