MAT137 - Calculus with proofs

- Assignment \#2 due on Thursday.
- Practice Test: Friday 3pm to Saturday 3pm
- TODAY: More continuity
- FRIDAY: Limit computations! (Videos 2.19, 2.20)

What can we conclude?

Let $c \in \mathbb{R}$. Let f and g be functions.
Assume f and g have removable discontinuities at c. What can we conclude about $f+g$ at c ?

1. $f+g$ must have a discontinuity at c
2. $f+g$ may have a discontinuity at c
3. $f+g$ must have a removable discontinuity at c
4. $f+g$ may have a removable discontinuity at c
5. $f+g$ must have a non-removable discontinuity at c
6. $f+g$ may have a non-removable discontinuity at c

Which one is the correct claim?

Claim 1?

(Assuming these limits exist)

$$
\lim _{x \rightarrow a} g(f(x))=g\left(\lim _{x \rightarrow a} f(x)\right)
$$

Claim 2?

IF
(A) $\lim _{x \rightarrow a} f(x)=L, \quad$ and $(B) \lim _{t \rightarrow L} g(t)=M$

THEN
(C) $\lim _{x \rightarrow a} g(f(x))=M$

Fix it!

This claim is false
IF (A) $\lim _{x \rightarrow a} f(x)=L$, and (B) $\lim _{t \rightarrow L} g(t)=M$
THEN (C) $\lim _{x \rightarrow a} g(f(x))=M$
Which additional hypotheses would make it true?

1. f is continuous at a
2. g is continuous at L
3. IF x is near a (but $x \neq a$), THEN $f(x) \neq L$
4. IF t is near L (but $t \neq L$), THEN $g(t) \neq M$

A difficult example

Construct a pair of functions f and g such that

$$
\begin{aligned}
& \lim _{x \rightarrow 0} f(x)=1 \\
& \lim _{t \rightarrow 1} g(t)=2
\end{aligned}
$$

$$
\lim _{x \rightarrow 0} g(f(x))=42
$$

Continuity and quantifiers

Let f be a function with domain \mathbb{R}.
Which statements are equivalent to " f is continuous"?
1.

$$
\begin{array}{r}
\forall \varepsilon>0, \exists \delta>0, \forall x \in \mathbb{R} \\
|x-a|<\delta \Longrightarrow|f(x)-f(a)|<\varepsilon
\end{array}
$$

2.

$$
\begin{aligned}
& \forall a \in \mathbb{R}, \forall \varepsilon>0, \exists \delta>0, \forall x \in \mathbb{R}, \\
& |x-a|<\delta \Longrightarrow|f(x)-f(a)|<\varepsilon
\end{aligned}
$$

3.

$$
\begin{aligned}
& \forall x \in \mathbb{R}, \forall \varepsilon>0, \exists \delta>0, \forall a \in \mathbb{R}, \\
& |x-a|<\delta \Longrightarrow|f(x)-f(a)|<\varepsilon
\end{aligned}
$$

4.

$$
\begin{aligned}
& \forall \varepsilon>0, \exists \delta>0, \forall a \in \mathbb{R}, \forall x \in \mathbb{R}, \\
& |x-a|<\delta \Longrightarrow|f(x)-f(a)|<\varepsilon
\end{aligned}
$$

