• TODAY: Continuity

- MONDAY is a holiday (no class)
- WEDNESDAY: More Continuity
 - Required videos 2.16, 2.17
 - Supplementary video: 2.18

Undefined function

Let $a \in \mathbb{R}$ and let f be a function. Assume f(a) is undefined.

What can we conclude?

- 1. $\lim_{x \to a} f(x)$ exist
- 2. $\lim_{x \to a} f(x)$ doesn't exist.
- 3. No conclusion. $\lim_{x \to a} f(x)$ may or may not exist.

What else can we conclude?

- 4. f is continuous at a.
- 5. f is not continuous at a.
- 6. No conclusion. f may or may not be continuous at a.

The definition of continuity

Let f be a function with domain \mathbb{R} . Let $a \in \mathbb{R}$.

Which statements are equivalent to "f is continuous at a"?

- 1. $\lim_{x \to a} f(x)$ exists
- 2. $\lim_{x\to a} f(x)$ exists and f(a) is defined.
- 3. $\lim_{x \to a} f(x) = f(a)$

4. $\forall \varepsilon > 0, \ \exists \delta > 0, \ \forall x \in \mathbb{R}, \ \mathbf{0} < |x - \mathbf{a}| < \delta \implies |f(x) - \mathbf{L}| < \varepsilon$

5. $\forall \varepsilon > 0, \ \exists \delta > 0, \ \forall x \in \mathbb{R}, \ 0 < |x - a| < \delta \implies |f(x) - f(a)| < \varepsilon$

6. $\forall \varepsilon > 0, \ \exists \delta > 0, \ \forall x \in \mathbb{R}, \qquad |x - a| < \delta \implies |f(x) - f(a)| < \varepsilon$

A new function

 Let x, y ∈ ℝ. What does the following expression calculate? Prove it.

$$f(x,y) = \frac{x+y+|x-y|}{2}$$

Suggestion: If you don't know how to start, try some sample values of x and y.

• Write a similar expression to compute $\min\{x, y\}$.

We want to prove the following theorem

Theorem

IF f and g are continuous functions THEN $h(x) = \max{f(x), g(x)}$ is also a continuous function.

You are allowed to use all results that we already know. What is the fastest way to prove this?

Hint: There is a way to prove this quickly without writing any epsilons.

Existence

Write the definition of these statements:

1.
$$\lim_{x \to -\infty} f(x) = L$$

2.
$$\lim_{x \to -\infty} f(x)$$
 does not exist

Write the negation of these statements:

- 1. If Justin Trudeau has a brother, then he also has a sister.
- 2. If a student in this class has a brother, then they also have a sister.