MAT137 - Calculus with proofs

- TODAY: Continuity
- MONDAY is a holiday (no class)
- WEDNESDAY: More Continuity
- Required videos 2.16, 2.17
- Supplementary video: 2.18

Undefined function

Let $a \in \mathbb{R}$ and let f be a function. Assume $f(a)$ is undefined.

What can we conclude?

1. $\lim _{x \rightarrow a} f(x)$ exist
2. $\lim _{x \rightarrow a} f(x)$ doesn't exist.
3. No conclusion. $\lim _{x \rightarrow a} f(x)$ may or may not exist.

What else can we conclude?
4. f is continuous at a.
5. f is not continuous at a.
6. No conclusion. f may or may not be continuous at a.

The definition of continuity

Let f be a function with domain \mathbb{R}. Let $a \in \mathbb{R}$.
Which statements are equivalent to " f is continuous at a "?

1. $\lim _{x \rightarrow a} f(x)$ exists
2. $\lim _{x \rightarrow a} f(x)$ exists and $f(a)$ is defined.
3. $\lim _{x \rightarrow a} f(x)=f(a)$
4. $\forall \varepsilon>0, \exists \delta>0, \forall x \in \mathbb{R}, 0<|x-a|<\delta \Longrightarrow|f(x)-L|<\varepsilon$
5. $\forall \varepsilon>0, \exists \delta>0, \forall x \in \mathbb{R}, 0<|x-a|<\delta \Longrightarrow|f(x)-f(a)|<\varepsilon$
6. $\forall \varepsilon>0, \exists \delta>0, \forall x \in \mathbb{R}, \quad|x-a|<\delta \Longrightarrow|f(x)-f(a)|<\varepsilon$

A new function

- Let $x, y \in \mathbb{R}$. What does the following expression calculate? Prove it.

$$
f(x, y)=\frac{x+y+|x-y|}{2}
$$

Suggestion: If you don't know how to start, try some sample values of x and y.

- Write a similar expression to compute $\min \{x, y\}$.

More continuous functions

We want to prove the following theorem

Theorem

IF f and g are continuous functions
THEN $h(x)=\max \{f(x), g(x)\}$ is also a continuous function.
You are allowed to use all results that we already know. What is the fastest way to prove this?

Hint: There is a way to prove this quickly without writing any epsilons.

Existence

Write the definition of these statements:

1. $\lim _{x \rightarrow-\infty} f(x)=L$
2. $\lim _{x \rightarrow-\infty} f(x)$ does not exist

Negation of conditionals

Write the negation of these statements:

1. If Justin Trudeau has a brother, then he also has a sister.
2. If a student in this class has a brother, then they also have a sister.
