MAT137 - Calculus with proofs

• Assignment #1 due TOMORROW

• TODAY: The formal definition of limit

- FRIDAY: Proofs with the definition of limit:
 - Required videos: 2.7, 2.8
 - Supplementary video: 2.9

δ from a graph

Find *all* values of $\delta > 0$ that satisfy

$$0 < |x-2| < \delta \implies |f(x)-2| < 0.5$$

Write down the formal definition of

$$\lim_{x\to a}f(x)=L.$$

Side limits

Recall

Let $L, a \in \mathbb{R}$. Let f be a function defined at least on an interval around a, except possibly at a.

$$\lim_{x\to a}f(x)=L$$

means

$$\forall \varepsilon > 0, \exists \delta > 0 \text{ s.t.} \quad 0 < |x-a| < \delta \implies |f(x)-L| < \varepsilon.$$

Write, instead, the formal definition of

$$\lim_{x\to a^+} f(x) = L, \quad \text{and} \quad \lim_{x\to a^-} f(x) = L.$$

Let $a \in \mathbb{R}$. Let f be a function defined at least on an interval around a, except possibly at a.

Write a formal definition for

 $\lim_{x\to a}f(x)=\infty.$

Which ones are (equivalent to) the definition of $\lim_{x\to a} f(x) = \infty$?

- 1. $\forall \varepsilon > 0, \exists \delta > 0 \text{ s.t. } 0 < |x a| < \delta \implies |f(x) \infty| < \varepsilon$
- 2. $\forall M > 0, \exists \delta > 0 \text{ s.t. } 0 < |x a| < \delta \implies |f(x) L| > M$
- 3. $\forall \delta > 0, \exists M > 0$ s.t. $0 < |x a| < \delta \implies f(x) > M$
- 4. $\forall \varepsilon > 0, \exists \delta > 0 \text{ s.t. } 0 < |x a| < \delta \implies f(x) > \varepsilon$
- 5. $\forall M > 0, \exists \delta > 0$ s.t. $0 < |x a| < \delta \implies f(x) > M$

6. $\forall M \in \mathbb{R}, \exists \delta > 0 \text{ s.t. } 0 < |x - a| < \delta \implies f(x) > M$