MAT137 - Calculus with proofs

- Assignment \#1 due TOMORROW
- TODAY: The formal definition of limit
- FRIDAY: Proofs with the definition of limit:
- Required videos: 2.7, 2.8
- Supplementary video: 2.9

δ from a graph

Find all values of $\delta>0$ that satisfy

$$
0<|x-2|<\delta \Longrightarrow|f(x)-2|<0.5
$$

Warm-up

Write down the formal definition of

$$
\lim _{x \rightarrow a} f(x)=L
$$

Side limits

Recall

Let $L, a \in \mathbb{R}$.
Let f be a function defined at least on an interval around a, except possibly at a.

$$
\lim _{x \rightarrow a} f(x)=L
$$

means
$\forall \varepsilon>0, \exists \delta>0$ s.t. $\quad 0<|x-a|<\delta \Longrightarrow|f(x)-L|<\varepsilon$.
Write, instead, the formal definition of

$$
\lim _{x \rightarrow a^{+}} f(x)=L, \quad \text { and } \quad \lim _{x \rightarrow a^{-}} f(x)=L
$$

Infinite limits

Let $a \in \mathbb{R}$. Let f be a function defined at least on an interval around a, except possibly at a.
Write a formal definition for $\lim _{x \rightarrow a} f(x)=\infty$.

Infinite limits

Which ones are (equivalent to) the definition of $\lim _{x \rightarrow a} f(x)=\infty$?

1. $\forall \varepsilon>0, \exists \delta>0$ s.t. $0<|x-a|<\delta \Longrightarrow|f(x)-\infty|<\varepsilon$
2. $\forall M>0, \exists \delta>0$ s.t. $0<|x-a|<\delta \Longrightarrow|f(x)-L|>M$
3. $\forall \delta>0, \exists M>0$ s.t. $0<|x-a|<\delta \Longrightarrow f(x)>M$
4. $\forall \varepsilon>0, \exists \delta>0$ s.t. $0<|x-a|<\delta \Longrightarrow f(x)>\varepsilon$
5. $\forall M>0, \exists \delta>0$ s.t. $0<|x-a|<\delta \Longrightarrow f(x)>M$
6. $\forall M \in \mathbb{R}, \exists \delta>0$ s.t. $0<|x-a|<\delta \Longrightarrow f(x)>M$
