MAT137 - Calculus with proofs

- Assignment \#1 due on THURSDAY.
- TODAY: Limits geometrically
- WED: The definition of limit
(Videos 2.5, 2.6)

Limits from a graph

Find the value of 1. $\lim _{x \rightarrow 2} f(x)$
2. $\lim _{x \rightarrow 0} f(f(x))$

Floor

Given a real number x, we defined the floor of x, denoted by $\lfloor x\rfloor$, as the largest integer smaller than or equal to x. For example:

$$
\lfloor\pi\rfloor=3, \quad\lfloor 7\rfloor=7, \quad\lfloor-0.5\rfloor=-1
$$

Sketch the graph of $y=\lfloor x\rfloor$. Then compute:

1. $\lim _{x \rightarrow 0^{+}}\lfloor x\rfloor$
2. $\lim _{x \rightarrow 0^{-}}\lfloor x\rfloor$
3. $\lim _{x \rightarrow 0}\lfloor x\rfloor$
4. $\lim _{x \rightarrow 0}\left\lfloor x^{2}\right\rfloor$

More limits from a graph

Find the value of

1. $\lim _{x \rightarrow 0^{+}} g(x)$
2. $\lim _{x \rightarrow 0^{+}}\lfloor g(x)\rfloor$
3. $\lim _{x \rightarrow 0^{+}} g(\lfloor x\rfloor)$
4. $\lim _{x \rightarrow 0^{-}} g(x)$
5. $\lim _{x \rightarrow 0^{-}}\lfloor g(x)\rfloor$
6. $\lim _{x \rightarrow 0^{-}}\left\lfloor\frac{g(x)}{2}\right\rfloor$
7. $\lim _{x \rightarrow 0^{-}} g(\lfloor x\rfloor)$
